hanzhenlei767 / BERT_Text_Matching
BERT用于文本匹配
☆9Updated 5 years ago
Alternatives and similar repositories for BERT_Text_Matching:
Users that are interested in BERT_Text_Matching are comparing it to the libraries listed below
- TensorFlow code and pre-trained models for BERT☆58Updated 3 years ago
- Use deep models including BiLSTM, ABCNN, ESIM, RE2, BERT, etc. and evaluate on 5 Chinese NLP datasets: LCQMC, BQ Corpus, ChineseSTS, OCN…☆76Updated 2 years ago
- 2020语言与智能技术竞赛:关系抽取任务☆66Updated 4 years ago
- 2019百度语言与智能技术竞赛信息抽取赛代5名代码☆69Updated 5 years ago
- NLP Predtrained Embeddings, Models and Datasets Collections(NLP_PEMDC). The collection will keep updating.☆64Updated 5 years ago
- 汽车主题情感分析大赛冠军☆27Updated 6 years ago
- code for ACL2020:《FLAT: Chinese NER Using Flat-Lattice Transformer》 我注释&修改&添加了部分源码,使得大家更容易复现这个代码。☆56Updated 4 years ago
- 关系抽取个人实战总结以及开源工具包使用☆56Updated 6 years ago
- CCKS2020面向金融领域的小样本跨类迁移事件抽取baseline☆55Updated 2 years ago
- 天池2020-新冠疫情相似句对判定大赛☆23Updated last year
- 复现论文《Simplify the Usage of Lexicon in Chinese NER》☆42Updated 3 years ago
- 天池大赛疫情文本挑战赛☆48Updated 4 years ago
- ccks_2019_百度实体链接技术比赛_第一名解决方案☆57Updated 5 years ago
- 在bert模型的pre_training基础上进行text_cnn文本分类☆78Updated 4 years ago
- 本项目是NLP领域一些任务的基准模型实现,包括文本分类、命名实体识别、实体关系抽取、NL2SQL、CKBQA以及BERT的各种下游任务应用。☆47Updated 3 years ago
- 关于文本分类的许多方法,主要涉及到TextCNN,TextRNN, LEAM, Transformer,Attention, fasttext, HAN等☆74Updated 6 years ago
- ccks2020 NER competitions☆116Updated 4 years ago
- bilstm _Attention_crf☆37Updated 5 years ago
- 法研杯CAIL2019阅读理解赛题参赛模型☆42Updated 5 years ago
- 2019之江杯人工智能大赛电商评论观点挖掘赛道top3☆45Updated 5 years ago
- 一个关于百度2019语言与智能技术竞赛信息抽取 (http://lic2019.ccf.org.cn/kg) 模型, 模型采用BERT+CNN。DEMO地址 https://github.com/Wangpeiyi9979/InformationExtractionDem…☆187Updated 5 years ago
- 2019年4月8日,第三届搜狐校园内容识别算法大赛。☆25Updated 5 years ago
- 相似案例匹配☆46Updated 5 years ago
- 实现了一下multi-head-selection联合关系实体抽取☆30Updated 5 years ago
- textcnn多标签文本分类☆36Updated 6 years ago
- ccf 2020 beike 问答匹配 B榜24名☆12Updated 2 years ago
- CAIL-CCL-2019相似案例匹配三等奖解决方案☆14Updated 5 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆136Updated 2 years ago
- lic2020关系抽取比赛,使用Pytorch实现苏神的模型。☆102Updated 4 years ago
- 一个简单地问答系统基于tfidf glove和bert☆26Updated 5 years ago