ecnumjc / RELinks
关系抽取实验
☆32Updated 9 years ago
Alternatives and similar repositories for RE
Users that are interested in RE are comparing it to the libraries listed below
Sorting:
- 基于句法分析的命名实体关系抽取程序☆66Updated 9 years ago
- Entity Linking,识别给定文本中出现的命名实体(Named Entity),并映射到特定的知识库中唯一的实体。包括命名实体识别、消歧等工作。☆72Updated 6 years ago
- ☆113Updated 7 years ago
- 2019年百度的实体链指比赛(ccks2019),一个baseline☆112Updated 6 years ago
- Implemented a QA System. This is the code for the NLPCC-ICCPOL shared task "Open Domain Question Answering."☆45Updated 7 years ago
- 基于知识库的开放域问答系统的相关工作☆70Updated 7 years ago
- 面向金融领域的实体关系抽取☆51Updated 6 years ago
- [Broken] A Chinese Question and Answer System☆51Updated 9 years ago
- 面向金融领域的事件主体抽取(ccks2019),一个baseline☆119Updated 6 years ago
- 针对百度知道电影问答数据的问题分类 question classification for zhidao.baidu.com in movie domain☆25Updated 8 years ago
- Source codes and corpora of paper "Iterated Dilated Convolutions for Chinese Word Segmentation"☆135Updated 4 years ago
- NLPCC2017示例代码以及数据描述☆116Updated 8 years ago
- A TensorFlow implementation of the paper _End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures_ (https://www.aclwe…☆28Updated 7 years ago
- baseline for ccks2019-ipre☆48Updated 5 years ago
- 新词发现☆66Updated 11 years ago
- The First Evaluation Workshop on Chinese Machine Reading Comprehension (CMRC 2017)☆91Updated 6 years ago
- 基于知识库信息的词向量模型☆50Updated 6 years ago
- Chinese new word discovery☆43Updated last year
- 2018百度机器阅读理解竞赛☆27Updated 7 years ago
- CCKS 2018 开放领域的中文问答任务 1st 解决方案☆111Updated 6 years ago
- 第一届“讯飞杯”中文机器阅读理解评测参考模型☆62Updated 8 years ago
- 基于条件随机场的医疗电子病例的命名实体识别☆114Updated 7 years ago
- Multi-Perspective Sentence Similarity Modeling with Convolution Neural Networks论文实现☆68Updated 7 years ago
- CCKS 2019 Task 2: Entity Recognition and Linking☆94Updated 6 years ago
- 依存关系分析,NLP,自然语言处理☆85Updated 3 years ago
- 基于最小熵原理的NLP工具包☆138Updated 3 years ago
- Kaggle新赛(baseline)-基于BERT的fine-tuning方案+基于tensor2tensor的Transformer Encoder方案☆61Updated 6 years ago
- CCKS2019-人物关系抽取☆75Updated 6 years ago
- 2018年机器阅读理解技术竞赛总结,国内外1000多支队伍中BLEU-4评分排名第6, ROUGE-L评分排名第14。(未ensemble,未嵌入训练好的词向量,无dropout)☆30Updated 7 years ago
- 2019 Language and Intelligence Challenge, Information Extraction☆29Updated 6 years ago