eastmountyxz / AI-Security-Paper
This resource mainly counts papers related to APT attacks, including APT traceability, APT knowledge graph construction, APT malicious sample detection, and APT overview. Hope these summarized papers are helpful to you~
☆199Updated 6 months ago
Related projects ⓘ
Alternatives and complementary repositories for AI-Security-Paper
- 该资源是各种溯源图相关的论文和资源总结(含PPT),涉及APT攻击检测、入侵检测、流量日志检测、系统安全等领域,希望对大家有所帮助~☆144Updated last year
- DataCon大数据安全分析大赛,2019年方向二(恶意代码检测)冠军源码、2020年方向五(恶意代码分析)季军源码☆103Updated 3 years ago
- DataCon2020大数据安全分析大赛,🏆【方向五】恶意代码分析冠军源码。☆109Updated 4 years ago
- Ai与Web安全相关资料的总结库,包括认为写的比较好的一些博客、项目、数据等☆76Updated 2 years ago
- 西湖论剑AI大数据安全分析赛 加密恶意流量检测赛道初赛第一名,决赛第二名方案☆19Updated 3 years ago
- ATLAS: A Sequence-based Learning Approach for Attack Investigation☆142Updated 2 years ago
- 这是作者 恶意代码分析、网络安全、系统安全等系列教程,主要是通过机器学习、人工智能和深度学习来分析恶意代码的在线笔记。希望对您有所帮助,学无止境,一起加油。☆98Updated 4 years ago
- ☆90Updated last year
- APT-KGL: An Intelligent APT Detection System Based on Threat Knowledge and Heterogeneous Provenance Graph Learning☆59Updated 2 years ago
- 基于深度学习的恶意软件检测研究;MalConv;☆84Updated 2 years ago
- BUPT SCSS大三小学期 机器学习分析恶意加密流量包项目☆55Updated 4 years ago
- Data Mining for Cybersecurity☆74Updated 2 years ago
- Code for "MalGraph: Hierarchical Graph Neural Networks for Robust Windows Malware Detection"☆41Updated 2 years ago
- 该资源为恶意代码检测相关的论文或文章总结,包括作者撰写的恶意代码与机器学习、深度学习相关博客,希望对您有所帮助~☆13Updated 4 years ago
- 本科毕业设计,参考LENET-5模型,将恶意软件转化为灰度图,通过卷积神经网络实现了恶意软件检测分类,准确率达98%。☆22Updated 4 years ago
- 记录我的安全学术学习☆127Updated 3 years ago
- 本项目通过大模型联动爬虫,检索Github上所有存有有价值漏洞信息与漏洞POC或规则信息的项目,并自动识别项目的目录结构、Readme信息后进行总结分析并分类,所汇总的项目可以帮助安全行业从业者收集漏洞信息、POC信息、规则等。☆87Updated 10 months ago
- ☆19Updated 5 years ago
- ☆46Updated 6 months ago
- Flow Interaction Graph based attack traffic detection system.☆137Updated 6 months ago
- ☆11Updated 5 years ago
- 结合cuckoo沙箱调用及报告处理实现基于API调用序列和网络流量的恶意代码检测☆10Updated 2 years ago
- Evading Provenance-Based ML Detectors with Adversarial System Actions☆26Updated 3 months ago
- Codes and data for USENIX Security 24 paper "MAGIC: Detecting Advanced Persistent Threats via Masked Graph Representation Learning"☆75Updated 3 weeks ago
- ☆11Updated 2 years ago
- ☆33Updated 3 months ago
- ☆23Updated 2 years ago
- 基于深度学习对dga恶意域名检测研究☆53Updated last year
- 主题为”基于GAN的恶意软件对抗样本生成“。首先介绍了恶意软件发展现状,引出基于模式匹配、特征空间和问题空间三种方式去检测恶意软件。然后介绍了如何生成对抗样本攻击恶意软件检测器,详细介绍了基于GAN的恶意软件对抗样本的MalGAN框架,并对实验结果进行了对比。最后总结了结构…☆31Updated 3 years ago