dongjiu0815 / MachineLearningPracticeLinks
实现机器学习实战以及关于周志华西瓜书中的一些扩展算法等
☆10Updated 7 years ago
Alternatives and similar repositories for MachineLearningPractice
Users that are interested in MachineLearningPractice are comparing it to the libraries listed below
Sorting:
- 天池比赛,kaggle等等(Keras/PyTorch实战)☆182Updated 5 years ago
- bilibili:啥都会一点的研究生☆48Updated 5 years ago
- 基于PyTorch使用迁移学习完成项目☆61Updated 7 years ago
- Some basic neural network implement by tf2.0☆28Updated 3 years ago
- 机器学习,深度学习,自然语言处理,计算机视觉方面的顶级期刊会议论文集☆142Updated 5 years ago
- 机器学习实战☆151Updated 3 years ago
- all code used by python(including web-crawler,deeplearning)☆28Updated 5 years ago
- cs231n_course_homework code☆31Updated 7 years ago
- In this project, I implemented several ensemble methods (including bagging, AdaBoost, SAMME, stacking, snapshot ensemble) for a normal CN…☆99Updated 7 years ago
- ☆24Updated 6 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- 谷歌INCEPTION-RESNET-V3迁移学习实现图像二分类判断图像是否生病☆17Updated 7 years ago
- ☆197Updated 5 years ago
- some small codes about deep learning☆51Updated 7 years ago
- personal practice(个人练习,实现了深度学习中的一些算法,包括:四种初始化方法(zero initialize, random initialize, xavier initialize, he initialize),深度神经网络,正则化,dropout,…☆223Updated 6 years ago
- AIchallenger2018 Agricultural-Disease 农作物病害检测☆55Updated 6 years ago
- pytorch版—使用resnet50迁移学习实现皮肤病图片的二分类☆135Updated 6 years ago
- ☆174Updated 3 years ago
- ☆13Updated 5 years ago
- AI学习过程中的实操代码☆212Updated 5 years ago
- 基于Python实现了K-Means、GMM、DBSCAN、AGNES等四种常见的聚类算法☆73Updated 6 years ago
- ☆143Updated 7 years ago
- 《机器学习之类别不平衡问题》文章代码☆46Updated 7 years ago
- cnn+rnn+attention: vgg(vgg16,vgg19)+rnn(LSTM, GRU)+attention, resnet(resnet_v2_50,resnet_v2_101,resnet_v2_152)+rnnrnn(LSTM, GRU)+attentio…☆209Updated 5 years ago
- ☆106Updated 6 years ago
- 《深度学习之PyTorch实战计算机视觉》全书代码☆138Updated 6 years ago
- Keras 快速上手——基于 Python 的深度学习实战☆32Updated 7 years ago
- RNN示例集合☆42Updated 6 years ago
- 基于无监督学习,无需训练,先使用SIFT算法提取图像特征,再使用KMeans聚类算法进行图像分类,速度非常快,精度还在提高。☆134Updated 6 years ago
- Learning and Recording☆34Updated 6 years ago