dongjiu0815 / MachineLearningPracticeLinks
实现机器学习实战以及关于周志华西瓜书中的一些扩展算法等
☆10Updated 7 years ago
Alternatives and similar repositories for MachineLearningPractice
Users that are interested in MachineLearningPractice are comparing it to the libraries listed below
Sorting:
- 天池比赛,kaggle等等(Keras/PyTorch实战)☆182Updated 5 years ago
- 基于PyTorch使用迁移学习完成项目☆61Updated 7 years ago
- ☆197Updated 5 years ago
- bilibili:啥都会一点的研究生☆48Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- 《深度学习之PyTorch实战计算机视觉》全书代码☆138Updated 6 years ago
- ☆374Updated 4 years ago
- 谷歌INCEPTION-RESNET-V3迁移学习实现图像二分类判断图像是否生病☆17Updated 7 years ago
- ☆24Updated 6 years ago
- 《动手学深度学习》 PyTorch 版本☆180Updated 5 years ago
- 《机器学习之类别不平衡问题》文章代码☆46Updated 7 years ago
- pytorch版—使用resnet50迁移学习实现皮肤病图片的二分类☆135Updated 6 years ago
- Some basic neural network implement by tf2.0☆28Updated 3 years ago
- 书籍:深度学习框架pytorch入门与实践☆158Updated 7 years ago
- personal practice(个人练习,实现了深度学习中的一些算法,包括:四种初始化方法(zero initialize, random initialize, xavier initialize, he initialize),深度神经网络,正则化,dropout,…☆224Updated 6 years ago
- 基于无监督学习,无需训练,先使用SIFT算法提取图像特征,再使用KMeans聚类算法进行图像分类,速度非常快,精度还在提高。☆134Updated 6 years ago
- cnn+rnn+attention: vgg(vgg16,vgg19)+rnn(LSTM, GRU)+attention, resnet(resnet_v2_50,resnet_v2_101,resnet_v2_152)+rnnrnn(LSTM, GRU)+attentio…☆209Updated 5 years ago
- ☆174Updated 3 years ago
- In this repository, I will implement some machine learning algorithms in Python, and show how to use it in a notebook. I feel it interest…☆42Updated 6 years ago
- 深度学习代码☆132Updated 6 years ago
- RNN示例集合☆42Updated 6 years ago
- 机器学习,深度学习,自然语言处理,计算机视觉方面的顶级期刊会议论文集☆142Updated 5 years ago
- 常用的特征选择方法☆67Updated 3 years ago
- keras注意力机制☆19Updated 7 years ago
- CV 方向论文阅读以及手写代码实现☆112Updated 3 years ago
- 主要是在学习李航的统计学习方法和周志华的机器学习西瓜书的笔记和相关的代码实现☆33Updated 6 years ago
- 机器学习实战☆151Updated 3 years ago
- Learning and Recording☆34Updated 6 years ago
- “合肥高新杯”心电人机智能大赛 —— 心电异常事件预测 TOP1 Solution☆147Updated 4 years ago
- There are some reproduced algorithms for learning from imbalanced data, including over-sampling,under-sampling and boosting☆13Updated 2 years ago