delta1037 / FatigueDetectRKNNLinks
fatigue detect rknn/onnx model deploy in rk3568 npu(ROCK 3A)
☆13Updated last year
Alternatives and similar repositories for FatigueDetectRKNN
Users that are interested in FatigueDetectRKNN are comparing it to the libraries listed below
Sorting:
- ☆29Updated 3 years ago
- yolov5: pytorch->onnx->caffe->hisi3559☆22Updated last year
- rknn-3588部署yolov5,利用线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆78Updated 5 months ago
- 基于hisi3559a的yolov5☆36Updated 3 years ago
- yolov5 deploy 3559☆33Updated 3 years ago
- [CVPR 2024] OC-SORT implemented in C++ with Eigen Library, Plus a Android Demo Apk☆62Updated 5 months ago
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆28Updated last year
- yolov10 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆73Updated last year
- UNetMultiLane 多车道线和车道线类型识别部署版本,测试不同平台部署(onnx、tensorRT、RKNN、Horzion),可识别所在的车道和车道线的类型。☆28Updated last year
- yolov8seg 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆28Updated last year
- NanoTrack(@HonglinChu), C++ TensorRT deployment. MAX 250 FPS!☆28Updated last year
- Multi-thread tracking of YOLOv5 and ByteTrack implemented by C++, accelerated by TensorRT. YOLOv5 和 ByteTrack 的多线程追踪 C++ 实现, 使用 TensorRT …☆75Updated 3 months ago
- yolov8n 部署版本,后处理用python语言和C++语言形式进行改写,便于移植不同平台(onnx、tensorRT、RKNN、Horzion)☆157Updated last year
- yolov10 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、运行速度最快的部署方式(全网首发)。☆53Updated last year
- ☆15Updated last year
- Inference YOLOv8 segmentation on ONNX, RKNN, Horizon and TensorRT☆35Updated 2 years ago
- PyTorch-->ONNX-->RKNN☆127Updated 3 years ago
- 使用OpenCV部署低光照图像增强,包含C++和Python两个版本的程序☆25Updated last year
- A quick TensorRT deoloyment solution for YOLOv8.☆39Updated last year
- ☆23Updated 3 years ago
- yolov7 部署版本,后处理用python语言和C++语言形式进行改写,便于移植不同平台(caffe、onnx、tensorRT、RKNN、Horzion)。☆32Updated 2 years ago
- Easy Training Official YOLOv11、YOLOv10、YOLOv8、YOLOv7、YOLOv6、YOLOv5 and Prune all_model using Torch-Pruning!☆105Updated 2 months ago
- ☆44Updated 3 years ago
- ☆17Updated last year
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆39Updated 8 months ago
- yolov5训练转onnx转caffe工程 直接可用☆23Updated 3 years ago
- yolov8n 部署版,基于官方的导出onnx脚本导出onnx模型,在不同平台上进行部署测试,便于移植不同平台(onnx、tensorRT、rknn、Horizon)。☆38Updated 2 years ago
- 使用onnxruntime部署YOWOv2视频动作检测,包含C++和Python两个版本的程序☆28Updated last year
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆52Updated 2 years ago
- PP-PicoDet-Android-Demo☆30Updated 3 years ago