datawhalechina / post-training-of-llmsLinks
本项目是一个围绕 DeepLearning.AI 出品的 Post-Training for LLMs 系列课程,为国内学习者量身打造的中文翻译与知识整理教程。项目提供课程内容翻译、知识点梳理和示例代码等内容,旨在降低语言门槛,让更多学生、研究人员和开发者系统掌握大语言模型(LLM)后训练阶段的核心技术与实践方法。
☆134Updated last week
Alternatives and similar repositories for post-training-of-llms
Users that are interested in post-training-of-llms are comparing it to the libraries listed below
Sorting:
- A simple and trans-platform rag framework and tutorial☆227Updated 3 weeks ago
- ☆121Updated 10 months ago
- 解锁HuggingFace生态的百般用法☆98Updated last year
- 通过带领大家解读Transformer模型来加深对模型的理解☆230Updated 7 months ago
- A simple and trans-platform agent framework and tutorial☆195Updated 3 weeks ago
- wow-fullstack,令人惊叹的全栈开发教程☆234Updated last week
- 一份全栈式大语言模型参考指南,用最简洁的代码帮助你端到端定义模型从零训练到工程落地的每一个细节☆108Updated 2 months ago
- This is a multi agent tutorial based on the CAMEL framework, aimed at understanding how to build an Agent Society from the ground up!☆696Updated last week
- OPEN AI通识课☆164Updated last year
- 大模型/LLM推理和部署理论与实践☆370Updated 6 months ago
- 基于文心一言和树莓派Pico的最简易桌面宠物☆85Updated 3 months ago
- ☆83Updated last year
- ☆284Updated last month
- AM (Advanced Mathematics) Chat is a large language model that integrates advanced mathematical knowledge, exercises in higher mathematics…☆225Updated last year
- ☆366Updated 8 months ago
- 大型语言模型实战指南:应用实践与场景落地☆85Updated last year
- 本项目为书籍《大模型RAG实战》的代码以及资料汇总。☆269Updated last year
- a chinese tutorial of git☆164Updated this week
- 一个很小很小的RAG系统☆334Updated 8 months ago
- 大模型技术栈一览☆122Updated last year
- 本项目致力于为大模型领域的初学者提供全面的知识体系,包括基础和高阶内容,以便开发者能迅速掌握大模型技术栈并全面了解相关知识。☆62Updated last year
- 《解构大语言模型:从线性回归到通用人工智能》配套代码☆267Updated 2 months ago
- 通过动画学强化学习笔记☆65Updated 10 months ago
- LLM/MLOps/LLMOps☆128Updated 7 months ago
- 《大模型项目实战:多领域智能应用开发》配套资源☆216Updated last month
- Building BERT Model with PyTorch☆23Updated last year
- TinyRAG☆403Updated 6 months ago
- everything about llm & aigc☆109Updated 3 weeks ago
- ☆356Updated last year
- LLM大模型(重点)以及搜广推等 AI 算法中手写的面试题,(非 LeetCode),比如 Self-Attention, AUC等,一般比 LeetCode 更考察一个人的综合能力,又更贴近业务和基础知识一点☆467Updated last year