airockchip / lite-transformer
[ICLR 2020] Lite Transformer with Long-Short Range Attention
☆12Updated 2 years ago
Alternatives and similar repositories for lite-transformer:
Users that are interested in lite-transformer are comparing it to the libraries listed below
- ☆517Updated last month
- YOLOv5 for RK3588☆76Updated last year
- ☆686Updated last year
- A simple demo of yolov5s running on rk3588/3588s using Python (about 72 frames). / 一个使用Python在rk3588/3588s上运行的yolov5s简单demo(大约72帧/s)。☆263Updated last year
- Run Large Language Models on RK3588 with GPU-acceleration☆89Updated last year
- ☆1,220Updated 2 months ago
- ☆935Updated 10 months ago
- Explore LLM model deployment based on AXera's AI chips☆71Updated last month
- simple yolov5 rtspserver for rk3588☆33Updated 4 months ago
- YoloV5 NPU for the RK3566/68/88☆88Updated 7 months ago
- The project is a multi-threaded inference demo of Yolo running on the RK3588 platform, which has been adapted for reading video files and…☆245Updated 2 months ago
- Useful resources for developing with the RK3588.☆236Updated 2 months ago
- ☆77Updated last year
- ☆1,240Updated 2 months ago
- Track vehicles and persons on rk3588 / rk3399pro.☆361Updated last year
- 在rockchip3588上实现用ffmpeg进行推拉流,其中推拉流使用硬件加速编解码☆59Updated last year
- yolov5模型(.pt)在RK3588(S)上的部署(实时摄像头检测)☆46Updated last year
- yolov8 瑞芯微 rknn 板端 C++部署。☆100Updated last year
- Inference RWKV v5, v6 and (WIP) v7 with Qualcomm AI Engine Direct SDK☆49Updated last week
- NEW - YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite☆161Updated 4 months ago
- ☆20Updated last year
- A simple demo of yolov5s running on rk3588/3588s using c++ (about 142 frames). / 一个使用c++在rk3588/3588s上运行的yolov5s简单demo(142帧/s)。☆505Updated 9 months ago
- A high performance, high expansion, easy to use framework for AI application. 为AI应用的开发者提供一套统一的高 性能、易用的编程框架,快速基于AI全栈服务、开发跨端边云的AI行业应用,支持GPU,…☆144Updated 7 months ago
- Streaming TTS based on Piper with optional RK3588 NPU support☆62Updated last month
- yolov11 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆30Updated 3 months ago
- The rknn2 API uses the secondary encapsulation of the process, which is easy for everyone to call. It is applicable to rk356x rk3588☆44Updated 2 years ago
- YOLOv5 in PyTorch > ONNX > CoreML > TFLite☆215Updated 3 months ago
- DDK for Rockchip NPU☆62Updated 4 years ago
- Implementation of yolo v10 in c++ std 17 over opencv and onnxruntime☆84Updated 4 months ago
- ☆14Updated last year