ZhengZixiang / chip2019_task2_question_pairs_matchingLinks
CHIP 2019平安医疗科技疾病问答迁移学习比赛baseline,rank7
☆27Updated 6 years ago
Alternatives and similar repositories for chip2019_task2_question_pairs_matching
Users that are interested in chip2019_task2_question_pairs_matching are comparing it to the libraries listed below
Sorting:
- 相似案例匹配☆48Updated 6 years ago
- (2019 法研杯 阅读理解) A pytorch implement of bert joint baseline for machine comprehension task in 2019 cail☆59Updated 3 years ago
- CCKS 2018 开放领域的中文问答任务 1st 解决方案☆109Updated 6 years ago
- 2019百度语言与智能技术竞赛信息抽取赛代5名代码☆68Updated 6 years ago
- 面向金融领域的事件主体抽取(ccks2019),一个baseline☆119Updated 6 years ago
- ☆59Updated 6 years ago
- 法研杯CAIL2019阅读理解赛题参赛模型☆43Updated 6 years ago
- 瑞金医院知识图谱大赛总决赛第四名比赛攻略_megemini队☆34Updated 6 years ago
- 法研杯2019 阅读理解赛道 top3☆151Updated 2 years ago
- 2019达观杯 第六名代码☆44Updated 2 years ago
- transform multi-label classification as sentence pair task, with more training data and information☆178Updated 6 years ago
- 2019年4月8日,第三届搜狐校园内容识别算法大赛。☆26Updated 6 years ago
- CCF BDCI 金融信息负面及主体判定 冠军代码☆105Updated 6 years ago
- 2019之江杯人工智能大赛电商评论观点挖掘赛道top3☆49Updated 6 years ago
- CCKS 2019 Task 2: Entity Recognition and Linking☆94Updated 6 years ago
- 机器检索阅读联合学习,莱斯杯:全国第二届“军事智能机器阅读”挑战赛 rank6 方案☆128Updated 5 years ago
- Rank2 solution (no-BERT) for 2019 Language and Intelligence Challenge - DuReader2.0 Machine Reading Comprehension.☆126Updated 6 years ago
- baseline for ccks2019-ipre☆48Updated 6 years ago
- Adversarial Attack文本匹配比赛☆42Updated 6 years ago
- 达观算法比赛ner任务,从重新训练bert,到finetune预测。☆75Updated 3 years ago
- ccks_2019_百度实体链接技术比赛_第一名解决方案☆57Updated 6 years ago
- 基于BERT的中文命名实体识别(pytorch)☆18Updated 6 years ago
- ☆29Updated 6 years ago
- 2019年百度的实体链接比赛,“科学空间队”源码☆110Updated 6 years ago
- 2019语言与智能技术竞赛-基于知识图谱的主动聊天☆115Updated 6 years ago
- 使用BERT解决lic2019机器阅读理解☆89Updated 6 years ago
- NLP的数据增强Demo☆48Updated 5 years ago
- 2019年百度的实体链指比赛(ccks2019),一个baseline☆112Updated 6 years ago
- 2019搜狐校园算法大赛。决赛解决方案ppt、实体lgb单模代码☆71Updated 6 years ago
- NER for Chinese electronic medical records. Use doc2vec, self_attention and multi_attention.☆28Updated 7 years ago