ZJUGuoShuai / MachineLearningLectureNotes
张志华机器学习导论 MOOC 讲义
☆128Updated 3 years ago
Alternatives and similar repositories for MachineLearningLectureNotes:
Users that are interested in MachineLearningLectureNotes are comparing it to the libraries listed below
- 统计学习方法训练营课程作业及答案,视频笔记在线阅读地址:https://relph1119.github.io/statistical-learning-method-camp☆196Updated 2 years ago
- A Chinese Notes of MLAPP,MLAPP 中文笔记项目 https://zhuanlan.zhihu.com/python-kivy☆364Updated 4 years ago
- 台大机器学习课程作业详解☆299Updated 5 years ago
- Coursera 机器学习基石 机器学习技法 林轩田 课堂PPT、作业及课堂笔记。☆161Updated 6 years ago
- 《深度学习》花书手推笔记☆499Updated 4 years ago
- ✒统计学习方法第二版(李航) 学习笔记、代码实现、课后习题☆362Updated 5 years ago
- 机器学习算法 基于西瓜书以及《统计学习方法》,当然包括DL。☆292Updated 5 years ago
- 《机器学习:软件工程方法与实现》Method and implementation of machine learning software engineering☆186Updated 2 years ago
- b站@shuhuai008的白板推导系列课程手写笔记,补充了一些用到的数学基础知识。☆71Updated 4 years ago
- 台湾大学林轩田机器学习笔记☆294Updated 4 years ago
- 🤓 Important machine learning knowledge, each article deeply analyzes theoretical knowledge☆118Updated 5 years ago
- ☆153Updated 4 years ago
- ☆121Updated 5 years ago
- 斯坦福 cs234 强化学习中文讲义☆201Updated 4 years ago
- 深度之眼《百面机器学习》训练营☆98Updated 5 years ago
- deep learning/ machine learning☆357Updated 2 years ago
- This is a note on matrix derivatives and described my own experience in detail. Hope you'll like it.☆557Updated 6 years ago
- 李航统计学习方法(第二版)的学习笔记,包括:1、每章重点公式的手动推导 2、每章算法的Python自实现 3、学习过程中的笔记与心得 4、每章节的课后习题 5、每周都会按照至少一周一章的进度定时将自己的学习进度更新到这个仓库☆122Updated 4 years ago
- 记录Learning from data一书中的习题解答☆991Updated 5 years ago
- 李航统计学习方法 PPT☆110Updated 8 years ago
- ☆512Updated 3 years ago
- ☆109Updated 7 years ago
- learning fomula☆289Updated 3 years ago
- Stanford CS229 (Autumn 2017)☆364Updated 7 years ago
- 机器学习基石和机器学习技法作业☆118Updated 6 years ago
- Source code from the book 【深度学习入门-基于Python的理论与实现】☆151Updated 6 years ago
- 周志华《机器学习》☆93Updated 7 years ago
- Exercises answers to the book "machine-learning" written by Prof. Zhou Zhihua of Nanjing University☆152Updated 2 years ago
- 慢慢整理所学的机器学习算法,并根据自己所理解的样子叙述出来。(注重数学推导)☆667Updated 2 years ago
- ☆54Updated 6 years ago