YeliangLi / Chinese-QASystemLinks
Chinese question answering system based on BLSTM and CRF.
☆16Updated 7 years ago
Alternatives and similar repositories for Chinese-QASystem
Users that are interested in Chinese-QASystem are comparing it to the libraries listed below
Sorting:
- 基于句法分析的命名实体关系抽取程序☆66Updated 9 years ago
- A tensorflow implementation of Chinese named entity recognition based on transfer learning☆13Updated 7 years ago
- A Chinese word segment model based on BERT, F1-Score 97%☆94Updated 6 years ago
- Tensorflow+bilstm+attention+multi label text classify☆121Updated 7 years ago
- Chinese new word discovery☆43Updated last year
- 基于siamese-lstm的中文句子相似度计算☆129Updated 7 years ago
- use ELMo in chinese environment☆105Updated 7 years ago
- A LSTM+CRF model for the seq2seq task for Medical named entity recognition in ccks2017☆80Updated 8 years ago
- A tensorflow implementation of siamese lstm.☆90Updated 8 years ago
- seq2seq+attention model for Chinese textsum☆42Updated 7 years ago
- 针对百度知道电影问答数据的问题分类 question classification for zhidao.baidu.com in movie domain☆25Updated 8 years ago
- ☆32Updated 6 years ago
- 基于条件随机场的医疗电子病例的命名实体识别☆114Updated 7 years ago
- 基于BERT的中文序列标注☆141Updated 7 years ago
- 2018百度机器阅读理解竞赛☆27Updated 7 years ago
- 新词发现 基于词频、凝聚系数和左右邻接信息熵☆122Updated 5 years ago
- 微信广告正负样本短文本分类 word2vec+CNN实现☆26Updated 7 years ago
- 2019语言与智能技术竞赛-基于知识图谱的主动聊天☆115Updated 6 years ago
- 面向金融领域的事件主体抽取(ccks2019),一个baseline☆119Updated 6 years ago
- 2018年机器阅读理解技术竞赛总结,国内外1000多支队伍中BLEU-4评分排名第6, ROUGE-L评分排名第14。(未ensemble,未嵌入训练好的词向量,无dropout)☆30Updated 7 years ago
- 基于webQA的开放域问答系统☆92Updated 7 years ago
- 面向金融领域的实体关系抽取☆51Updated 6 years ago
- 中文预训练模型生成字向量学习,测试BERT,ELMO的中文效果☆100Updated 5 years ago
- Byte Cup 2018国际机器学习竞赛 23 名(水滴队)代码☆47Updated 6 years ago
- ☆122Updated 8 years ago
- 使用BERT模型进行文本分类,相似句子判断,以及词性标注☆90Updated 6 years ago
- CCKS 2018 开放领域的中文问答任务 1st 解决方案☆110Updated 6 years ago
- WikiQA,复现论文《APPLYING DEEP LEARNING TO ANSWER SELECTION: A STUDY AND AN OPEN TASK》☆29Updated 6 years ago
- This is a implementation of the paper A SIMPLE BUT TOUGH-TO-BEAT BASELINE FOR SENTENCE EMBEDDING.☆86Updated 8 years ago
- AI Challenger 2018 Sentiment Analysis Baseline with fastText☆152Updated 7 years ago