Whitesad / mnist-federated-learningLinks
这是一个基于Minist数据集的横向联邦学习实现
☆15Updated 4 years ago
Alternatives and similar repositories for mnist-federated-learning
Users that are interested in mnist-federated-learning are comparing it to the libraries listed below
Sorting:
- 使用pytorch,mnist、cifar数据集实现基础的联邦学习(平局聚合、不含加密过程)☆30Updated 3 years ago
- 区块链+联邦学习+恶意检测算法☆28Updated 4 years ago
- 通过阅读Communication-Efficient Learning of Deep Networks from Decentralized Data与Robust and Communication-Efficient Federated Learning from …☆38Updated 2 years ago
- Implement FedAvg algorithm based on Tensorflow☆253Updated 4 years ago
- FedShare: Secure Aggregation based on Additive Secret Sharing in Federated Learning☆20Updated 2 years ago
- 基于同态加密的联邦学习安全聚合系统☆45Updated 4 years ago
- 联邦学习分布式训练MNist数据集☆59Updated 6 years ago
- FedAvg code with privacy protection function, the application of Paillier homomorphic encryption algorithm and differential privacy, diff…☆122Updated 9 months ago
- 使用tensorflow2.1实现联合学习推荐模型,并加入差分隐私噪声进行隐私保护。☆54Updated 2 years ago
- ☆194Updated 11 months ago
- PyTorch Federated Learning (easy to use and extend)☆264Updated last year
- ☆864Updated 11 months ago
- ☆20Updated 2 years ago
- 自己动手实现的联邦学习相关代码☆9Updated 3 years ago
- nips23-Dynamic Personalized Federated Learning with Adaptive Differential Privacy☆78Updated 10 months ago
- 联邦学习相关资源整理☆43Updated 4 years ago
- 完全去中心化联邦学习☆28Updated last year
- Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shak…☆393Updated 8 months ago
- 带加密的联邦学习,学习+练手的小作品☆20Updated 5 years ago
- Three implementations of FedAvg: numpy, pytorch and tensorflow federated.☆43Updated 3 years ago
- 一个轻量型联邦学习框架,支持支持本地仿真和实际部,支持通信参量、模型、数据的自由更改,支持通信及模型各种指标的观察 开发人员:Jiaxiang Geng/Songning Gao☆27Updated 11 months ago
- Paper notes and code for differentially private machine learning☆356Updated 7 months ago
- 关于簇联邦学习的一个小小的改进。自动确定簇个数,提高簇模型精度,缓解用户孤立的问题☆36Updated 3 years ago
- Overview of Federal Learning☆293Updated 2 years ago
- 🔬 FedCom为SWPU2022届本科毕业设计《基于社区检测的多任务聚类联邦学习》。本研究提出了一种多任务聚类联邦学习(clustered federated learning, CFL)的新方法,该方法的特点是基于社区检测(community detection)来进…☆66Updated 2 years ago
- vertical federated learning demo with crypten☆47Updated 3 years ago
- 基于安全多方计算 的隐私保护系统设计与实现☆47Updated 3 years ago
- Asynchronous Federated Learning☆46Updated 2 years ago
- Preserve data privacy with k-anonymity (samarati & mondrian), differential privacy, federated learning, paillier homomorphic encryption, …☆61Updated 3 years ago
- Standard federated learning implementations in FedLab and FL benchmarks.☆153Updated last year