WThirteen / asr_AISHELL-3Links
Chinese speech recognition | 中文语音识别 (使用AISHELL-3数据集训练语音识别模型)
☆10Updated last year
Alternatives and similar repositories for asr_AISHELL-3
Users that are interested in asr_AISHELL-3 are comparing it to the libraries listed below
Sorting:
- 使用python进行语音识别☆164Updated 3 years ago
- 利用Python+TensorFlow实现语音识别☆48Updated 6 years ago
- 基于Pytorch实现的语音情感识别☆235Updated 5 months ago
- 基于傅里叶变换的降噪与基于深度学习的语音识别的多功能系统☆14Updated 2 years ago
- 说话人识别(声纹识别)算法的Python实现。包括GMM(已完成)、GMM-UBM、ivector、基于深度学习的声纹识别(self-attention已完成)。☆102Updated 2 years ago
- 语音信号处理试验教程,Python代码☆340Updated 3 years ago
- Acoustic feature extraction using Librosa library and openSMILE toolkit.使用Librosa音频处理库和openSMILE工具包,进行简单的声学特征提取☆211Updated 5 years ago
- 基于GMM的0-9孤立词语音识别系统☆10Updated 5 years ago
- 使用Tensorflow实现声纹识别☆325Updated last year
- Audio Split 基于双门限法的语音端点检测及语音分割☆134Updated 5 years ago
- 语音增强☆17Updated 4 years ago
- 语音识别理论、论文和PPT☆617Updated last year
- 语音感情识别☆39Updated 5 months ago
- 用CASIA database数据集做的,做的语音情感识别和语音识人的练习☆72Updated 2 years ago
- You can find the speech algorithms you want here☆834Updated 3 months ago
- ASR中文语音识别☆37Updated 6 years ago
- Pytorch实现的流式与非流式的自动语音识别框架,同时兼容在线和离线识别,目前支持Conformer、Squeezeformer、DeepSpeech2模型,支持多种数据增强方法。☆705Updated 4 months ago
- 基于卷积神经网络的语音识别声学模型的研究☆178Updated 6 years ago
- 基于PaddlePaddle实现的语音识别,中文语音识别。项目完善,识别效果好。支持Windows,Linux下训练和预测,支持Nvidia Jetson开发板预测。☆747Updated 10 months ago
- 基于深度学习的语音增强、去混响☆97Updated last year
- 基于深度学习的普通话语音识别☆18Updated 6 years ago
- The Pytorch implementation of sound classification supports EcapaTdnn, PANNS, TDNN, Res2Net, ResNetSE and other models, as well as a vari…☆539Updated 5 months ago
- 基于Tensorflow实现声音分类,博客地址:☆104Updated 5 years ago
- 语音识别 MFCCs特征处理 cnn神经网络☆100Updated 6 years ago
- 一个执着于让CPU\端侧-Model逼近GPU-Model性能的项目,CPU上的实时率(RTF)小于0.1☆475Updated 7 months ago
- ☆17Updated 6 years ago
- An Open Source Tools for Speaker Recognition☆628Updated last year
- Data preparation for separation☆78Updated 4 years ago
- 这个项目将 RAVDESS 数据集切割成 1s 短语音,利用 openSMILE+CNN 进行训练,目标是将短语音分类到四种情感中,分别是:开心(happy)、悲伤(sad)、生气(angry)和中性(neutral)。最后准确率达到 76% 左右。☆60Updated 4 years ago
- 端到端中文语音识别☆93Updated last year