SeafyLiang / machine_learning_study
machine_learning_study
☆24Updated last year
Alternatives and similar repositories for machine_learning_study:
Users that are interested in machine_learning_study are comparing it to the libraries listed below
- 能源AI挑战赛_异常检测赛第3名方案☆13Updated 2 years ago
- ☆16Updated 2 years ago
- 开源往期获奖竞赛代码☆44Updated 2 years ago
- A collection of data competition solutions | 数据竞赛方案合集☆49Updated last month
- 整理所有特征工程用到的方法,为了复用☆10Updated 4 years ago
- vLoong能源AI挑战赛——异常检测赛 第五名开源代码:基于lgb单模型☆14Updated 2 years ago
- 数据竞赛笔记fork☆66Updated last year
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 5 years ago
- AI Studio x vLoong能源AI挑战赛——异常检测赛 A榜 TOP11 B榜 TOP8 方案☆15Updated last year
- 第三届 Apache Flink 极客挑战赛暨AAIG CUP——电商推荐“抱大腿”攻击识别亚军代码方案☆28Updated 2 years ago
- 2019厦门国际银行“数创金融杯”数据建模大赛 复赛第六☆19Updated 5 years ago
- XGBoost 实战调参☆19Updated 4 years ago
- 本赛题要求选手基于历史光伏发电数据、天气数据、光伏设备空间相对位置等信息,通过建立适当的模型,对未来一段时间内的光伏发电出力进行预测。A榜使用外部数据得分0.88501103804 排名32,未使用外部数据得分0.88042407737 ;B榜得分0.90467829011…☆28Updated 9 months ago
- ☆100Updated 6 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆66Updated 6 years ago
- 利用Encoder对二分类任务的序列数据进行概率预测☆50Updated 4 years ago
- Z Lab数据实验室开源代码汇总☆198Updated 7 months ago
- Sliver Solution (Top 2%) for Kaggle M5 Forecasting competition☆42Updated 4 months ago
- TensorFlow Probability;Time series model☆125Updated 2 years ago
- 西南财经大学“新网银行杯”数据科学竞赛 2/721☆31Updated 6 years ago
- 2020 第四届工业大数据创新竞赛-水电站入库流量预测-top1代码☆29Updated 4 years ago
- Kaggle 项目实战(教程) = 文档 + 代码 + 视频(欢迎参与)☆10Updated 5 years ago
- My Data Competition Solutions☆101Updated last year
- Solution in KDD Cup2021 Multi-dataset Time Series Anomaly Detection Competition☆10Updated 3 years ago
- 2017-Summer-Term-Study☆24Updated 7 years ago
- KDD CUP 2021 Multi-dataset Time Series Anomaly Detection☆29Updated 3 years ago
- CCF BDCI 2022比赛 返乡发展人群预测赛题 Baseline 数据挖掘(特征工程+集成学习)队伍排名39/2297☆11Updated 10 months ago
- 根据GBDT衍生变量,并对衍生后的变量进行应用☆21Updated 4 years ago
- LR / SVM / XGBoost / RandomForest etc.☆28Updated 4 years ago
- 分别基于statsmodels和scikit-learn实现两种可用于sklearn pipeline的 LogisticRegression,并输出相应的报告☆20Updated last year