PaddlePaddle / ElasticCTR
ElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部署,具备高性能、工业级部署、端到端体验的特点,并且作为开源套件,满足二次深度开发的需求。
☆180Updated 4 years ago
Related projects ⓘ
Alternatives and complementary repositories for ElasticCTR
- FastNN provides distributed training examples that use EPL.☆81Updated 2 years ago
- A flexible, high-performance serving system for machine learning models☆140Updated 2 years ago
- ☆318Updated 3 weeks ago
- A stand alone industrial serving system for angel.☆62Updated 2 years ago
- 通用深度学习推理工具,可在生产环境中快速上线由TensorFlow、PyTorch、Caffe框架训练出的深度学习模型。☆407Updated 2 years ago
- Cloud Native ML/DL Platform☆128Updated 4 years ago
- ☆209Updated last year
- A high-performance serving system for DeepRec based on TensorFlow Serving.☆18Updated last year
- A flexible, high-performance framework for large-scale retrieval problems based on TensorFlow.☆150Updated 4 months ago
- embedx 是基于 c++ 开发的、完全自研的分布式 embedding 训练和推理框架。它目前支持 图模型、深度排序、召回模型和图与排序、图与召回的联合训练模型等