PaddlePaddle / AutoDL
☆157Updated 5 years ago
Alternatives and similar repositories for AutoDL
Users that are interested in AutoDL are comparing it to the libraries listed below
Sorting:
- FairNAS: Rethinking Evaluation Fairness of Weight Sharing Neural Architecture Search☆302Updated 9 months ago
- FastNN provides distributed training examples that use EPL.☆83Updated 3 years ago
- OneFlow models for benchmarking.☆104Updated 9 months ago
- MoGA: Searching Beyond MobileNetV3☆227Updated 4 years ago
- ☆78Updated last month
- ElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部…☆183Updated 4 years ago
- ☆250Updated 3 years ago
- Paddle Large Scale Classification Tools,supports ArcFace, CosFace, PartialFC, Data Parallel + Model Parallel. Model includes ResNet, ViT,…☆152Updated last year
- ☆18Updated 5 years ago
- Easy & Effective Application Framework for PaddlePaddle☆34Updated 4 years ago
- ☆42Updated 2 years ago
- Neural Architecture Search using Deep Neural Network and Monte Carlo Tree Search☆169Updated 4 years ago
- Code for AAAI 2020 paper, Beyond Dropout: Feature Map Distortion to Regularize Deep Neural Networks (Disout).☆217Updated 4 years ago
- alibabacloud-aiacc-demo☆43Updated 2 years ago
- ☆45Updated 5 years ago
- A memory balanced and communication efficient FullyConnected layer with CrossEntropyLoss model parallel implementation in PyTorch☆84Updated 4 years ago
- pytorch源码阅读 0.2.0 版本☆90Updated 5 years ago
- UCloud AI SDK☆33Updated 2 years ago
- Pytorch Implementationg of “Learning Efficient Convolutional Networks through Network Slimming”☆77Updated 6 years ago
- Network acceleration methods☆177Updated 3 years ago
- A universal and efficient framework for training well-performing light net☆124Updated 7 years ago
- ☆21Updated last year
- Jupyter notebook running through basic examples of Distributed TensorFlow☆70Updated 3 years ago
- High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.