OpenLMLab / GAOKAO-Bench-UpdatesLinks
GAOGAO-Bench-Updates is a supplement to the GAOKAO-Bench, a dataset to evaluate large language models.
☆34Updated 7 months ago
Alternatives and similar repositories for GAOKAO-Bench-Updates
Users that are interested in GAOKAO-Bench-Updates are comparing it to the libraries listed below
Sorting:
- ☆36Updated 11 months ago
- ☆83Updated last year
- ☆94Updated 8 months ago
- code for paper 《RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement》☆34Updated last year
- ☆50Updated last year
- Scaling Preference Data Curation via Human-AI Synergy☆100Updated 2 months ago
- SuperCLUE-Math6:新一代中文原生多轮多步数学推理数据集的探索之旅☆60Updated last year
- code for Scaling Laws of RoPE-based Extrapolation☆73Updated last year
- ☆97Updated 3 months ago
- 中文大语言模型评测第三期☆32Updated 3 weeks ago
- Unleashing the Power of Cognitive Dynamics on Large Language Models☆63Updated 11 months ago
- The complete training code of the open-source high-performance Llama model, including the full process from pre-training to RLHF.☆67Updated 2 years ago
- Gaokao Benchmark for AI☆108Updated 3 years ago
- ☆110Updated last year
- CLongEval: A Chinese Benchmark for Evaluating Long-Context Large Language Models☆42Updated last year
- Dataset and evaluation script for "Evaluating Hallucinations in Chinese Large Language Models"☆132Updated last year
- GRAIN: Gradient-based Intra-attention Pruning on Pre-trained Language Models☆19Updated 2 years ago
- Token level visualization tools for large language models☆88Updated 7 months ago
- 本项目用于大模型数学解题能力方面的数据集合成,模型训练及评测,相关文章记录。☆93Updated 11 months ago
- This is a personal reimplementation of Google's Infini-transformer, utilizing a small 2b model. The project includes both model and train…☆58Updated last year
- ☆57Updated 10 months ago
- 1.4B sLLM for Chinese and English - HammerLLM🔨☆44Updated last year
- WritingBench: A Comprehensive Benchmark for Generative Writing☆109Updated last week
- ☆151Updated last year
- Deep Research☆85Updated last week
- 最简易的R1结果在小模型上的复现,阐述类O1与DeepSeek R1最重要的本质。Think is all your need。利用实验佐证,对于强推理能力,think思考过程性内容是AGI/ASI的核心。☆43Updated 6 months ago
- ☆21Updated 3 weeks ago
- ☆92Updated last year
- [ICML 2025] |TokenSwift: Lossless Acceleration of Ultra Long Sequence Generation☆113Updated 3 months ago
- MetaAgent: Toward Self-Evolving Agent via Tool Meta-Learning☆25Updated last month