MLNLP-World / Reinforcement-Learning-Comic-NotesLinks
通过动画学强化学习笔记
☆54Updated 5 months ago
Alternatives and similar repositories for Reinforcement-Learning-Comic-Notes
Users that are interested in Reinforcement-Learning-Comic-Notes are comparing it to the libraries listed below
Sorting:
- 本项目用于大模型数学解题能力方面的数据集合成,模型训练及评测,相关文章记录。☆91Updated 10 months ago
- ☆30Updated 5 months ago
- 包含程序员面试大厂面试题和面试经验☆166Updated 2 months ago
- 通义千问的DPO训练☆51Updated 10 months ago
- 大型语言模型实战指南:应用实践与场景落地☆75Updated 10 months ago
- 一些 LLM 方面的从零复现笔记☆210Updated 3 months ago
- a toolkit on knowledge distillation for large language models☆127Updated last week
- ☆112Updated 8 months ago
- 大语言模型应用:RAG、NL2SQL、聊天机器人、预训练、MOE混合专家模型、微调训练、强化学习、天池数据竞赛☆66Updated 5 months ago
- ThinkLLM:🚀 轻量、高效的大语言模型算法实现☆84Updated 2 months ago
- llm & rl☆176Updated this week
- 欢迎来到 "LLM-travel" 仓库!探索大语言模型(LLM)的奥秘 🚀。致力于深入理解、探讨以及实现与大模型相关的各种技术、原理和应用。☆329Updated last year
- Scaling Preference Data Curation via Human-AI Synergy☆95Updated last month
- ☆20Updated last year
- LLM101n: Let's build a Storyteller 中文版☆131Updated 11 months ago
- ☆104Updated last year
- The Roadmap for LLMs☆85Updated 2 years ago
- Official Repository for SIGIR2024 Demo Paper "An Integrated Data Processing Framework for Pretraining Foundation Models"☆82Updated 11 months ago
- 解锁HuggingFace生态的百般用法☆93Updated 7 months ago
- ☆157Updated 3 months ago
- DeepSpeed教程 & 示例注释 & 学习笔记 (大模型高效训练)☆173Updated last year
- ☆91Updated 10 months ago
- Awesome LLM pre-training resources, including data, frameworks, and methods.☆212Updated 3 months ago
- This is a repo for showcasing using MCTS with LLMs to solve gsm8k problems☆85Updated 4 months ago
- 使用单个24G显卡,从0开始训练LLM☆56Updated 3 weeks ago
- ☆85Updated 6 months ago
- 训练一个对中文支持更好的LLaVA模型,并开源训练代码和数据。☆64Updated 11 months ago
- 怎么训练一个LLM分词器☆151Updated 2 years ago
- Code for a New Loss for Mitigating the Bias of Learning Difficulties in Generative Language Models☆65Updated 5 months ago
- Full stack LLM (Pre-training/finetuning, PPO(RLHF), Inference, Quant, etc.)☆24Updated 5 months ago