waylandzhang / DeepSeek-RL-Qwen-0.5B-GRPO-gsm8kLinks
☆85Updated 6 months ago
Alternatives and similar repositories for DeepSeek-RL-Qwen-0.5B-GRPO-gsm8k
Users that are interested in DeepSeek-RL-Qwen-0.5B-GRPO-gsm8k are comparing it to the libraries listed below
Sorting:
- 一些 LLM 方面的从零复现笔记☆216Updated 3 months ago
- This is a repository used by individuals to experiment and reproduce the pre-training process of LLM.☆467Updated 3 months ago
- Train a 1B LLM with 1T tokens from scratch by personal☆720Updated 4 months ago
- llm & rl☆194Updated this week
- 对llama3进行全参微调、lora微调以及qlora微调。☆207Updated 10 months ago
- 使用单个24G显卡,从0开始训练LLM☆55Updated last month
- 大语言模型应用:RAG、NL2SQL、聊天机器人、预训练、MOE混合专家模型、微调训练、强化学习、天池数据竞赛☆69Updated 6 months ago
- 通义千问的DPO训练☆52Updated 11 months ago
- DeepSeek 系列工作解读、扩展和复现。☆670Updated 4 months ago
- ☆73Updated last year
- 中文大模型微调(LLM-SFT), 数学指令数据集MWP-Instruct, 支持模型(ChatGLM-6B, LLaMA, Bloom-7B, baichuan-7B), 支持(LoRA, QLoRA, DeepSpeed, UI, TensorboardX), 支持(微…☆208Updated last year
- personal chatgpt☆382Updated 8 months ago
- 从0开始,将chatgpt的技术路线跑一遍。☆252Updated 11 months ago
- 阿里通义千问(Qwen-7B-Chat/Qwen-7B), 微调/LORA/推理☆114Updated last year
- 欢迎来到 "LLM-travel" 仓库!探索大语言模型(LLM)的奥秘 🚀。致力于深入理解、探讨以及实现与大模型相关的各种技术、原理和应用。☆338Updated last year
- ☆113Updated 9 months ago
- Qwen1.5-SFT(阿里, Ali), Qwen_Qwen1.5-2B-Chat/Qwen_Qwen1.5-7B-Chat微调(transformers)/LORA(peft)/推理☆66Updated last year
- ☆259Updated 8 months ago
- 本项目用于大模型数学解题能力方面的数据集合成,模型训练及评测,相关文章记录。☆93Updated 11 months ago
- 这是一个从头训练大语言模型的项目,包括预训练、微调和直接偏好优化,模型拥有1B参数,支持中英文。☆557Updated 6 months ago
- ☆737Updated 2 months ago
- ☆114Updated last year
- 怎么训练一个LLM分词器☆152Updated 2 years ago
- 一个基于HuggingFace开发的大语言模型训练、测试工具。支持各模型的webui、终端预测,低参数量及全参数模型训练(预训练、SFT、RM、PPO、DPO)和融合、量化。☆218Updated last year
- LLaMA Factory Document☆151Updated 2 weeks ago
- TinyRAG☆323Updated 2 months ago
- 在verl上做reward的定制开发☆107Updated 3 months ago
- 从0到1构建一个MiniLLM (pretrain+sft+dpo实践中)☆467Updated 5 months ago
- minimal-cost for training 0.5B R1-Zero☆764Updated 3 months ago
- ☆96Updated 2 months ago