L1aoXingyu / Char-RNN-PyTorchLinks
使用PyTorch实现Char RNN生成古诗和周杰伦的歌词
☆150Updated 7 years ago
Alternatives and similar repositories for Char-RNN-PyTorch
Users that are interested in Char-RNN-PyTorch are comparing it to the libraries listed below
Sorting:
- An ML-based Chinese Poem Generator☆257Updated 11 months ago
- Generate Chinese hip-pop lyrics using GAN☆131Updated 5 years ago
- 基于Pytorch的中文聊天机器人 集成BeamSearch算法☆242Updated 8 years ago
- 中国古诗生成(文本生成)☆134Updated 7 years ago
- a char-RNN based on pytorch☆238Updated 8 years ago
- ☆45Updated 6 years ago
- A Public Corpus for Machine Learning☆44Updated 7 years ago
- Chinese Poetry Generation☆178Updated 8 years ago
- QANet+DuReader中文机器阅读理解☆221Updated 7 years ago
- 基于深度学习的自然语言处理库☆159Updated 7 years ago
- 搜狐算法大赛:主要实体词情绪识别 baseline☆106Updated 6 years ago
- 中国法研杯-司法人工智能挑战赛☆92Updated 7 years ago
- 总结了一些可以用作聊天机器人训练实作的文字语聊,包含中英文不同语言☆117Updated 7 years ago
- seq2seq model written in Pytorch☆93Updated 5 years ago
- ☆122Updated 8 years ago
- 练习题︱基于今日头条开源数据的文本挖掘☆83Updated 7 years ago
- 中文文本自动纠错☆86Updated 7 years ago
- A Chinese Cloze-style RC Dataset: People's Daily & Children's Fairy Tale (CFT)☆175Updated 6 years ago
- 基于TextRank和WordNet的中英文单文档自动摘要☆63Updated 10 years ago
- word2vec/glove/swivel binary file on chinese corpus☆405Updated 9 years ago
- 基于LSTM语言模型和seq2seq序列模型的歌词生成,包括数据爬取、数据处理、模型训练和歌词生成。☆72Updated 6 years ago
- A pytorch implementation of Attention is all you need☆91Updated 7 years ago
- An Implementation of 'Attention is all you need' with Chinese Corpus☆131Updated last year
- keras example of seq2seq, auto title☆332Updated 6 years ago
- 一个基于最新版本TensorFlow的Char RNN实现。可以实现生成英文、写诗、歌词、小说、生成代码、生成日文等功能。☆180Updated 7 years ago
- A RNN model to automatically generate Chinese poems.☆51Updated 9 years ago
- 唐诗,藏头诗,按需自动生成古诗,基于Keras、LSTM-RNN。文档齐全。☆210Updated 7 years ago
- 基于双向RNN,Attention机制的编解码神经机器翻译模型☆62Updated 7 years ago
- Codes for Stylistic Chinese Poetry Generation via Unsupervised Style Disentanglement (EMNLP 2018)☆195Updated 5 years ago
- A Chinese sentiment dataset may be useful for sentiment analysis.☆234Updated 9 years ago