hailiang-wang / egret-wenda-corpusLinks
A Public Corpus for Machine Learning
☆44Updated 6 years ago
Alternatives and similar repositories for egret-wenda-corpus
Users that are interested in egret-wenda-corpus are comparing it to the libraries listed below
Sorting:
- 基于webQA的开放域问答系统☆91Updated 7 years ago
- SMP2017中文人机对话评测数据☆107Updated 7 years ago
- Question and Answering Model with TensorFlow☆32Updated 3 years ago
- An interpreter module for AIML (Artificial Intelligence Markup Language), support Chinese, support Python3☆69Updated 4 years ago
- 总结了一些可以用作聊天机器人训练实作的文字语聊,包含中英文不同语言☆118Updated 7 years ago
- Joint Slot Filling and Intent Prediction Use Attention and Slot Gate. NER, Intent classification☆41Updated 5 years ago
- tensorflow-seq2seq-chatbot-zh中文聊天机器人☆27Updated 8 years ago
- ☆121Updated 7 years ago
- 基于字符训练词向量☆89Updated 7 years ago
- keras sparse implement of margin-softmax☆100Updated 6 years ago
- The First Evaluation Workshop on Chinese Machine Reading Comprehension (CMRC 2017)☆91Updated 6 years ago
- NLPCC2017示例代码以及数据描述☆115Updated 8 years ago
- QANet+DuReader中文机器阅读理解☆221Updated 6 years ago
- [Broken] A Chinese Question and Answer System☆51Updated 8 years ago
- 基于capsule的观点型阅读理解模型☆89Updated 5 years ago
- Train Wikidata with word2vec for word embedding tasks☆123Updated 6 years ago
- ☆40Updated 8 years ago
- Implemented a QA System. This is the code for the NLPCC-ICCPOL shared task "Open Domain Question Answering."☆44Updated 7 years ago
- 第一届“讯飞杯”中文机器阅读理解评测参考模型☆61Updated 7 years ago
- ☆49Updated 6 years ago
- A Chinese Cloze-style RC Dataset: People's Daily & Children's Fairy Tale (CFT)☆171Updated 6 years ago
- 2018-JDDC大赛第4名的解决方案☆236Updated 6 years ago
- ☆61Updated 8 years ago
- THU Chinese Keyphrase Extraction Toolkit☆124Updated 7 years ago
- 利用深度学习实现中文分词☆61Updated 7 years ago
- 基于gensim模块计算句子相似度☆122Updated 9 years ago
- Multi-Perspective Sentence Similarity Modeling with Convolution Neural Networks论文实现☆68Updated 7 years ago
- 2019语言与智能技术竞赛-基于知识图谱的主动聊天☆115Updated 6 years ago
- A Chinese word segment model based on BERT, F1-Score 97%☆93Updated 6 years ago
- ☆37Updated 6 years ago