HowardNTUST / Marketing-Data-Science-ApplicationLinks
☆129Updated 2 years ago
Alternatives and similar repositories for Marketing-Data-Science-Application
Users that are interested in Marketing-Data-Science-Application are comparing it to the libraries listed below
Sorting:
- Python 3 與數據分析概要☆509Updated 3 years ago
- True difference or noise? 📊☆75Updated 2 years ago
- python machine learning tutorial☆30Updated 6 years ago
- 博碩文化「Python 網路爬蟲與資料分析入門實戰」範例程式碼☆117Updated 4 years ago
- 這是我在政治大學開設 Deep Learning MOOC 教學的相關檔案。☆144Updated 4 years ago
- Introduce data science in plain Python. 🧪☆35Updated 2 years ago
- Python crawling tutorial☆62Updated 2 years ago
- Public Opinion Mining System of Taiwanese Forums☆118Updated 3 years ago
- 台灣新聞拆拆樂☆176Updated 4 years ago
- My Data Science Note☆65Updated 3 weeks ago
- 這是政治大學應用數學系《數學軟體應用》課程的上課筆記。主要介紹 Python 程式語言, 目標是用 Python 做數據分析。☆93Updated 5 years ago
- Python 數據分析與人工智慧課程網頁☆84Updated 5 years ago
- Share AI training courses, materials, and new technologies/papers☆92Updated 7 years ago
- 爬蟲極簡教學(fetch, parse, search, multiprocessing, API)- PTT 為例☆363Updated 2 years ago
- Scrapy-based Crawlers for news of Taiwan☆94Updated 2 years ago
- line-bot-tutorial use python flask☆297Updated last month
- ☆36Updated 5 years ago
- 「一段 Airflow 與資料工程的故事:談如何用 Python 追漫畫連載」一文的程式碼☆77Updated 5 years ago
- Airflow tutorial for beginner☆79Updated 3 years ago
- 台鐵驗證碼辨識/轉文字☆95Updated 3 years ago
- 台大資工系統訓練班 Python 與資料科學應用的教學專案☆44Updated last year
- 全民瘋AI系列 [經典機器學習]☆198Updated this week
- Awesome-nlp 繁體中文翻譯計畫。原作者:https://github.com/keon/awesome-nlp☆59Updated 6 years ago
- 台灣聊天機器人社群 ➡️ https://www.facebook.com/groups/chatbot.tw☆66Updated 4 years ago
- 《少年Py的大冒險》第二集, 深度學習的入門!☆47Updated last year
- MONPA 罔拍是一個提供正體中文斷詞、詞性標註以及命名實體辨識的多任務模型☆247Updated 6 months ago
- A spider on Dcard. Strong and speedy.☆98Updated 6 years ago
- 深度學習課程(第四梯)所設計的課程實作☆210Updated 5 years ago
- deeplearning record☆50Updated last year
- API of Articut 中文斷詞 (兼具語意詞性標記):「斷詞」又稱「分詞」,是中文資訊處理的基礎。Articut 不用機器學習,不需資料模型,只用現代白話中文語法規則,即能達到 SIGHAN 2005 F1-measure 94% 以上,Recall 96% 以上的…☆413Updated 2 months ago