HanXiaoyang / Interview-NotebookLinks
for 应届小盆友准备秋招
☆15Updated 6 years ago
Alternatives and similar repositories for Interview-Notebook
Users that are interested in Interview-Notebook are comparing it to the libraries listed below
Sorting:
- 基于深度学习的CTR预估,从FM推演各深度学习CTR预估模型(附代码)☆208Updated 6 years ago
- ☆101Updated 5 years ago
- 数据科学竞赛实战☆165Updated last year
- 2018科大讯飞营销算法大赛(冠军方案)☆94Updated 5 years ago
- 推荐系统/计算广告相关仓库,个人博客https://jesse-csj.github.io/☆289Updated 4 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆104Updated 5 years ago
- ☆201Updated 6 years ago
- 跟踪计算广告涉及的召回排序模型、特征工程相关的经典论文☆82Updated 5 years ago
- This is a kaggle challenge project called Display Advertising Challenge by CriteoLabs at 2014.这是2014年由CriteoLabs在kaggle上发起的广告点击率预估挑战项目。☆359Updated 6 years ago
- Spark SQL 实现 ItemCF,UserCF,Swing,推荐系统,推荐算法,协同过滤☆141Updated 5 years ago
- IJCAI18-阿里妈妈广告转化率预测代码(Rank29)☆96Updated 6 years ago
- 第二届腾讯广告算法大赛(Rank 9) http://algo.tpai.qq.com/home/rankinglist/rankingList☆106Updated 6 years ago
- LR, Wide&Deep, DCN, NFM, DeepFM, NFFM☆116Updated 6 years ago
- implement fm demo with python☆51Updated 6 years ago
- 这是BDCI2018的联通赛题第一名解决方案☆298Updated 6 years ago
- 1st place solution for the Kuaishou Active-user Forecast competition☆191Updated 6 years ago
- 第一届腾讯社交广告高校算法大赛(全国14名)☆231Updated 7 years ago
- Top 6 - Code for JData-2018☆81Updated 6 years ago
- 基础的深度学习实验研究结果汇总笔记☆507Updated 2 years ago
- 高潜用户购买意向预测-rank12☆21Updated 5 years ago
- 推荐系统实战☆33Updated 5 years ago
- 2019 HUAWEI DIGIX Nurbs Solutions☆133Updated 5 years ago
- Machine Learning Trick : GBDT_Feature Blending Stacking CascadeForest☆369Updated 7 years ago
- ☆172Updated 4 years ago
- Sharing the CTR Prediction original paper and personal study notes☆146Updated 5 years ago
- The code for 2018 Tencent College Algorithm Contest, and the online result ranks 7th.☆309Updated 6 years ago
- Factorization Machines implementation with Tensorflow☆143Updated 6 years ago
- A simple DeepFM.☆101Updated 7 years ago
- 科大讯飞 top2solution☆93Updated 6 years ago
- Dive into machine learning system, start from reinventing the wheel.☆231Updated 6 years ago