Geeksongs / Recommendation_algorithm_interview_questions-collectionLinks
笔者在网上查找一些过来人面试推荐算法岗位的经验时,常常感到翻阅多篇帖子看起来不太方便,于是萌生了整理一系列面试题目的想法。能够方便自己平时自己进行查找,也方便各位找实习和找工作的同学复习和备战面试!
☆20Updated 2 years ago
Alternatives and similar repositories for Recommendation_algorithm_interview_questions-collection
Users that are interested in Recommendation_algorithm_interview_questions-collection are comparing it to the libraries listed below
Sorting:
- ☆40Updated 2 years ago
- 推荐系统学习笔记☆208Updated 2 years ago
- DIGIX2021 基于多目标优化的视频推荐 亚军方案☆25Updated 3 years ago
- 基于Pytorch 框架复现的推荐系统的经典模型☆25Updated 5 years ago
- 零基础入门金融 风控-贷款违约预测 TOP11☆39Updated 4 years ago
- ☆19Updated 3 years ago
- Paper阅读记录博客(基于GitHub Action和GitHub Issue实现)。☆50Updated last year
- 2022微信大数据挑战赛_rank12☆18Updated 2 years ago
- 深度学习与推荐系统学习,理论结合代码更香。☆132Updated 2 years ago
- this is the code of MMCLR☆41Updated 2 years ago
- 2021 huawei DIGIX competition baseline☆69Updated 4 years ago
- 天池-Datawhale 零基础入门NLP-新闻文本分类 最终榜Top10分享☆60Updated 4 years ago
- ☆100Updated 3 years ago
- 数据竞赛笔记fork☆74Updated 2 years ago
- ☆97Updated 3 years ago
- ☆90Updated 4 years ago
- UCAS研一课程大数据分析的笔记和代码☆35Updated last year
- Here are the models listed in CTR. Example: FM、DeepFM、xDeepFM etc.☆67Updated 11 months ago
- ☆16Updated 2 years ago
- 百面深度学习-学习☆83Updated 4 years ago
- 该仓库主要记录 NLP 算法工程师相关的顶会论文研读笔记【Bert篇】☆13Updated 2 years ago
- C++开发\机器学习\深度学习\推荐算法基础知识及面试题总结☆20Updated 4 years ago
- 天猫复购预测 rank7 源码☆39Updated 4 years ago
- 本课程面对具有一定机器学习基础,但尚未入门的NLPer或经验尚浅的NLPer,尽力避免陷入繁琐枯燥的公式讲解中,力求用代码展示每个模型背后的设计思想,同时也会带大家梳理每个模块下的技术演变,做到既知树木也知森林。☆87Updated last year
- Implementation of several news recommendation methods in Pytorch.☆34Updated 4 years ago
- 大家好,我是coggle开源小组成员 庐州小火锅,这篇文章将会介绍天池学习赛贷款违约预测的TOP6单模方案(具体介绍见我的csdn:),现附上比赛链接天池学习赛贷款违约预测.https://tianchi.aliyun.com/competition/entrance/53…☆50Updated 4 years ago
- ☆14Updated 3 years ago
- GCN 入门学习教程☆83Updated 3 years ago
- MAXP 命题赛 任务一:基于DGL的图机器学习任务。队伍:Graph@ICT,🥉rank6。https://www.biendata.xyz/competition/maxp_dgl/☆29Updated 3 years ago
- Some baselines for PCIC2021 Track 2: Causal Inference and Recommendation☆17Updated 2 years ago