DataXujing / DIoU_YOLO_V3
【口罩佩戴检测数据训练 | 开源口罩检测数据集和预训练模型】Train D/CIoU_YOLO_V3 by darknet for object detection
☆58Updated 4 years ago
Alternatives and similar repositories for DIoU_YOLO_V3:
Users that are interested in DIoU_YOLO_V3 are comparing it to the libraries listed below
- 基于RetinaFace的目标检测方法,适用于人脸、缺陷、小目标、行人等☆110Updated 4 years ago
- YOLO系列资料☆51Updated 2 years ago
- ☆62Updated 4 years ago
- Minimal PyTorch implementation of YOLOv3☆62Updated 5 years ago
- yolov5 v1版本中文注释☆58Updated 4 years ago
- CornerNet:基于虚拟仿真环境下的自动驾驶交通标志识别☆38Updated 5 years ago
- 人员佩戴口罩检测数据集☆82Updated 4 years ago
- 用opencv部署nanodet目标检测,包含C++和Python两种版本程序的实现☆107Updated 3 years ago
- 钢筋数量识别 baseline 0.98336☆84Updated last year
- A keras version of real-time object detection network : mobilenet_v2_ssdlite☆80Updated 4 years ago
- ☆33Updated 5 years ago
- Pytorch复现YOLOv3,使用最新的DIOU loss训练☆69Updated 4 years ago
- Tips on how to find suitable object detection anchors☆145Updated 4 years ago
- 数钢筋demo,IOU 0.7 下,AP 90.6。训练只要不到十分钟,可以非常愉快的 玩耍☆34Updated 5 years ago
- Tensorflow2.0下运行目标检测网络Centernet(基于see--的keras-centernet)☆37Updated last year
- 用opencv的dnn模块实现Yolo-Fastest的目标检测☆50Updated 4 years ago
- You can import this module directly☆55Updated 5 years ago
- yolov5 onnx caffe☆85Updated 3 years ago
- this is a crawler which is used to download images from baidu and biying☆30Updated 6 years ago
- 45.1% mAP, Keras impl of PPYOLO and YOLOv4.☆28Updated 4 years ago
- 重新设计的RFBNet300,模型参数量只有0.99MB,AP达到0.78,200FPS☆100Updated 5 years ago
- Keras上700行代码复现YOLOv3!使用DIOU loss。支持将模型导出为pytorch模型。☆59Updated 4 years ago
- 【目标识别】yolo3_keras旗帜识别&&训练自己数据☆50Updated 3 years ago
- 轻量级的车牌检测项目(支持车牌四角定位、矫正对齐)☆166Updated 9 months ago
- a data augment tool for object detection☆90Updated 6 years ago
- Retinaface pytorch face-pose-detect face-key-point-detect☆36Updated 4 years ago
- YOLOv3-training-prune☆59Updated 4 years ago
- 在Windows上的 ONNX 转 TensorRT 解决方案☆41Updated 5 years ago
- convert your yolov3-tiny model to trt model☆90Updated 4 years ago
- yolov5 onnx caffe☆115Updated 3 years ago