DQinYuan / AndroidMalwareWithN-gram
提取安卓软件的n-gram特征
☆23Updated 6 years ago
Alternatives and similar repositories for AndroidMalwareWithN-gram:
Users that are interested in AndroidMalwareWithN-gram are comparing it to the libraries listed below
- Extract call graph from apks using Flowdroid.☆19Updated 4 years ago
- ☆61Updated 7 years ago
- ☆14Updated 7 years ago
- Building relation graph of Android APIs to catch the semantics between APIs, and used to enhancing Android malware detectors☆85Updated 2 years ago
- Android Malware Detection using Deep Learning☆54Updated 5 years ago
- Android Malware detection using Deep Learning Hybrid Model.☆24Updated 7 years ago
- 从Androzoo下载数据集,区分年份以及良性/恶意应用,支持协程、代理、断点继续、错误重试等☆48Updated last year
- Drebin - NDSS 2014 Re-implementation☆107Updated 7 years ago
- revised☆22Updated 4 years ago
- An explainable GNN-based Android malware detection system in paper "MsDroid: Identifying Malicious Snippets for Android Malware Detection…☆57Updated last year
- 🤖Android malware detection using deep learning, contains android malware samples, papers, tools etc.🐛☆174Updated 4 years ago
- Project FlowCog (2017)☆27Updated 6 years ago
- ☆22Updated last year
- Code for "MalGraph: Hierarchical Graph Neural Networks for Robust Windows Malware Detection"☆45Updated 3 years ago
- 利用机器学习检测恶意代码☆20Updated 8 years ago
- DataCon大数据安全分析大赛,2019年方向二(恶意代码检测)冠军源码、2020年方向五(恶意代码分析)季军源码☆105Updated 4 years ago
- Deep Learning Based Android Malware Detection Framework☆40Updated 4 years ago
- Effectiveness of additional training of an ANN based model in detectining android malware☆16Updated 5 years ago
- DataCon2020大数据安全分析大赛,🏆【方向五】恶意代码分析冠军源码。☆113Updated 4 years ago
- Few-Shot malware classification using fused features of static analysis and dynamic analysis (基于静态+动态分析的混合特征的小样本恶意代码分类框架)☆31Updated 3 years ago
- 使用安卓Opcode字节码的N-gram序列特征进行恶意软件检测的完全步骤,使用算法RF,KNN☆19Updated 4 years ago
- 本科毕业设计,参考LENET-5模型,将恶意软件转化为灰度图,通过卷积神经网络实现了恶意软件检测分类,准确率达98%。☆23Updated 4 years ago
- Source code of Malware Classification by Learning Semantic and Structural Features of Control Flow Graphs (TrustCom 2021)☆21Updated 3 years ago
- ☆10Updated last year
- ☆21Updated 5 years ago
- Evaluation of ML models in Android malware classification, adversarial attacks on DNNs & defense mechanisms☆12Updated 5 years ago
- A novel and interpretable ML-based approach to classify malware with high accuracy and explain the classification result meanwhile.☆27Updated 2 years ago
- A new version used Androguard but not Soot to realize MaMadroid。☆19Updated 4 years ago
- Implementation of DeepIntent: Deep Icon-Behavior Learning for Detecting Intention-Behavior Discrepancy in Mobile Apps☆39Updated 3 years ago
- Malware detection in android using permissions, API calls, CFGs as features☆16Updated 7 years ago