DQinYuan / AndroidMalwareWithN-gramLinks
提取安卓软件的n-gram特征
☆24Updated 7 years ago
Alternatives and similar repositories for AndroidMalwareWithN-gram
Users that are interested in AndroidMalwareWithN-gram are comparing it to the libraries listed below
Sorting:
- 🤖Android malware detection using deep learning, contains android malware samples, papers, tools etc.🐛☆179Updated 5 years ago
- revised☆22Updated 5 years ago
- ☆14Updated 7 years ago
- DataCon大数据安全分析大赛,2019年方向二(恶意代码检测)冠军源码、2020年方向五(恶意代码分析)季军源码☆110Updated 4 years ago
- ☆59Updated 7 years ago
- Android Malware Detection using Deep Learning☆53Updated 6 years ago
- TDSC 2022 | An explainable GNN-based Android malware detection system in paper "MsDroid: Identifying Malicious Snippets for Android Malwa…☆62Updated last year
- Building relation graph of Android APIs to catch the semantics between APIs, and used to enhancing Android malware detectors☆93Updated 3 years ago
- Drebin - NDSS 2014 Re-implementation☆106Updated 8 years ago
- ☆42Updated 4 years ago
- 从Androzoo下载数据集,区分年份以及良性/恶意应用,支持协程、代理、断点继续、错误重试等☆55Updated 2 years ago
- Papers, code and datasets about deep learning for Android malware defenses and malware detection☆148Updated 2 years ago
- Android Malware Detection with Graph Convolutional Networks using Function Call Graph and its Derivatives.☆40Updated 4 years ago
- Extract call graph from apks using Flowdroid.☆20Updated 5 years ago
- Android Malware detection using Deep Learning Hybrid Model.☆24Updated 7 years ago
- A new version used Androguard but not Soot to realize MaMadroid。☆19Updated 4 years ago
- Code for Deep Android Malware Detection paper☆179Updated 8 years ago
- Effectiveness of additional training of an ANN based model in detectining android malware☆16Updated 6 years ago
- 基于深度学习的恶意软件检测研究;MalConv;☆116Updated 3 years ago
- ☆24Updated 5 years ago
- A Static Sensitive Subgraph-based Feature for Android Malware Detection☆11Updated 4 years ago
- DataCon2020大数据安全分析大赛,🏆【方向五】恶意代码分析冠军源码。☆118Updated 5 years ago
- 主题为”基于GAN的恶意软件对抗样本生成“。首先介绍了恶意软件发展现状,引出基于模式匹配、特征空间和问题空间三种方式去检测恶意软件。然后介绍了如何生成对抗样本攻击恶意软件检测器,详细介绍了基于GAN的恶意软件对抗样本的MalGAN框架,并对实验结果进行了对比。最后总结了结构…☆37Updated 4 years ago
- 使用安卓Opcode字节码的N-gram序列特征进行恶意软件检测的完全步骤,使用算法RF,KNN☆18Updated 5 years ago
- Code for "MalGraph: Hierarchical Graph Neural Networks for Robust Windows Malware Detection"☆48Updated 4 years ago
- Implementation of DeepIntent: Deep Icon-Behavior Learning for Detecting Intention-Behavior Discrepancy in Mobile Apps☆41Updated 3 years ago
- Few-Shot malware classification using fused features of static analysis and dynamic analysis (基于静态+动态分析的混合特征的小样本恶意代码分类框架)☆34Updated 4 years ago
- ☆172Updated 7 years ago
- Android malware detection using static and dynamic analysis☆39Updated 6 years ago
- A novel and interpretable ML-based approach to classify malware with high accuracy and explain the classification result meanwhile.☆28Updated 3 years ago