DQinYuan / AndroidMalwareWithN-gram
提取安卓软件的n-gram特征
☆22Updated 6 years ago
Alternatives and similar repositories for AndroidMalwareWithN-gram:
Users that are interested in AndroidMalwareWithN-gram are comparing it to the libraries listed below
- 🤖Android malware detection using deep learning, contains android malware samples, papers, tools etc.🐛☆175Updated 4 years ago
- ☆59Updated 6 years ago
- ☆14Updated 6 years ago
- Android Malware Detection using Deep Learning☆51Updated 5 years ago
- Android Malware detection using Deep Learning Hybrid Model.☆23Updated 6 years ago
- Effectiveness of additional training of an ANN based model in detectining android malware☆16Updated 5 years ago
- DataCon大数据安全分析大赛,2019年方向二(恶意代码检测)冠军源码、2020年方向五(恶意代码分析)季军源码☆104Updated 3 years ago
- Deep Learning Based Android Malware Detection Framework☆40Updated 4 years ago
- Code for Deep Android Malware Detection paper☆175Updated 7 years ago
- An explainable GNN-based Android malware detection system in paper "MsDroid: Identifying Malicious Snippets for Android Malware Detection…☆52Updated last year
- Extract call graph from apks using Flowdroid.☆19Updated 4 years ago
- 使用安卓Opcode字节码的N-gram序列特征进行恶意软件检测的完全步骤,使用算法RF,KNN☆19Updated 4 years ago
- DataCon2020大数据安全分析大赛,🏆【方向五】恶意代码分析冠军源码。☆112Updated 4 years ago
- Few-Shot malware classification using fused features of static analysis and dynamic analysis (基于静态+动态分析的混合特征的小样本恶意代码分类框架)☆30Updated 3 years ago
- Android Malware Detection with Graph Convolutional Networks using Function Call Graph and its Derivatives.☆36Updated 3 years ago
- Drebin - NDSS 2014 Re-implementation☆106Updated 7 years ago
- revised☆21Updated 4 years ago
- Malware detection in android using permissions, API calls, CFGs as features☆16Updated 7 years ago
- ☆34Updated 3 years ago
- ☆172Updated 6 years ago
- Android malware detection using static and dynamic analysis☆38Updated 5 years ago
- 该资源为恶意代码检测相关的论文或文章总结,包括作者撰写的恶意代码与机器学习、深度学习相关博客,希望对您有所帮助~☆13Updated 4 years ago
- 从Androzoo下载数据集,区分年份以及良性/恶意应用,支持协程、代理、断点继续、错误重试等☆46Updated last year
- 本科毕业设计,参考LENET-5模型,将恶意软件转化为灰度图,通过卷积神经网络实现了恶意软件检测分类,准确率达98%。☆21Updated 4 years ago
- 本科毕业设计_恶意代码检测分类平 台☆38Updated 5 years ago
- MalScan: Fast Market-Wide Mobile Malware Scanning by Social-Network Centrality Analysis☆41Updated 4 years ago
- 基于深度学习的恶意软件检测研究;MalConv;☆98Updated 2 years ago
- 利用机器学习检测恶意代码☆20Updated 8 years ago
- Training Vision Transformers from Scratch for Malware Classification☆28Updated 3 years ago
- 结合cuckoo沙箱调用及报告处理实现基于API调用序列和网络流量的恶意代码检测☆10Updated 2 years ago