CrawlScript / KerasServerLinks
☆16Updated 7 years ago
Alternatives and similar repositories for KerasServer
Users that are interested in KerasServer are comparing it to the libraries listed below
Sorting:
- Examples of Invoking TensorFlow from Java☆74Updated 7 years ago
- 住房月租金预测大数据赛TOP1☆29Updated 6 years ago
- 中文地址匹配以及经纬度匹配☆40Updated 9 years ago
- 这是Word2vec和Doc2vec的一个应用示例:用Word2vec计算词的相似度和用doc2vec计算句子的相似度。☆26Updated 8 years ago
- 机器学习文本分类器☆45Updated 9 years ago
- 《实体数据挖掘与知识图谱构建》一书的代码和实验数据。☆43Updated 10 years ago
- Using tensorflow/serving to deploy kashgari model for time training and predicting.☆13Updated 6 years ago
- DeepDive Tutorial with Chinese Support☆35Updated 4 years ago
- PyTorch中文入门教程☆43Updated 8 years ago
- word2vec源码阅读,标记了中文注释☆60Updated 9 years ago
- text classfication 大数据精准营销中搜狗用户画像挖掘 rank61/880☆62Updated 7 years ago
- AI模型序列化总结☆51Updated 6 years ago
- Using Neo4j and Py2neo to demonstrate Chinese top 20 movies and their actor, visualized by graph.☆20Updated 6 years ago
- 一个基于 fasttext + faiss 的商品内容相关推荐实现,nginx+uwsgi+flask / gunicorn+uvicorn+fastapi 提供api查询接口,增加Spark实现 Ansj+Word2vec+LSH+Phoenix☆53Updated 2 years ago
- 一个基于 faiss 的检索服务.☆49Updated 7 years ago
- 自然语言处理相关实验实现 some experiment of natural language processing, Like text classification, named entity recognition, pos-tags, segment, key …☆54Updated 7 years ago
- 智能客服☆110Updated 6 years ago
- 基于标题分类的主题句提取方法可描述为: 给定一篇新闻报道, 计算标题与新闻主题词集的相似度, 判断标题是否具有提示性。对于提示性标题,抽取新闻报道中与其最相似的句子作为主题句; 否则, 综合利用多种特征计算新闻报道中句子的重要性, 将得分最高的句子作为主题句。☆40Updated 9 years ago
- 自适应学习模型-应用于教育领域-知识图谱☆50Updated 7 years ago
- DeepDive 中文配置☆52Updated 8 years ago
- A transformer seq2seq model to generate couplets. 一个写对联的 Transformer 序列到序列模型。☆17Updated 7 years ago
- 科赛 携程出行产品未来14个月销量预测 第2名☆62Updated 8 years ago
- CCF_大数据精准营销中搜狗用户画像挖掘☆17Updated 8 years ago
- 智能制造工业AI Top2解决方案☆20Updated 7 years ago
- 练习题︱基于今日头条开源数据的文本挖掘☆83Updated 7 years ago
- 中文文本自动纠错☆86Updated 7 years ago
- 语义、情感、相似度分析。☆59Updated 10 years ago
- FastText 中文文档☆61Updated 5 years ago
- ☆51Updated 9 years ago
- A Scaffold to help you build Deep Learning Model much more easily, implemented with TensorFlow 2.0☆166Updated 6 years ago