BrikerMan / Kashgari-doc-zhLinks
Kashgari 框架的中文文档
☆22Updated 5 years ago
Alternatives and similar repositories for Kashgari-doc-zh
Users that are interested in Kashgari-doc-zh are comparing it to the libraries listed below
Sorting:
- 2019语言与智能技术竞赛-基于知识图谱的主动聊天☆115Updated 6 years ago
- 基于检索的任务型多轮对话☆78Updated 5 years ago
- 使用ALBERT预训练模型,用于识别文本中的时间,同时验证模型的预测耗时是否有显著提升。☆57Updated 5 years ago
- CCL2018客服领域用户意图分类冠军1st方案☆149Updated 3 years ago
- 基于capsule的观点型阅读理解模型☆89Updated 6 years ago
- 基于Elasticsearch的KBQA☆55Updated 6 years ago
- CCKS 2018 开放领域的中文问答任务 1st 解决方案☆110Updated 6 years ago
- Tensorflow solution of NER task Using BiLSTM-CRF model with CMU/Google XLNet☆45Updated 6 years ago
- Final Project for EECS496-7☆63Updated 6 years ago
- 达观算法比赛ner任务,从重新训练bert,到finetune预测。☆75Updated 3 years ago
- CCKS 2019 Task 2: Entity Recognition and Linking☆94Updated 6 years ago
- 2018atec蚂蚁金服NLP智能客服比赛 16th/2632☆111Updated 7 years ago
- tensorflow ,keras ,bert ,flask ,nlp, machine reading , translater,seq2seq☆40Updated 2 years ago
- codes for ai challenger 2018 machine reading comprehension☆27Updated 7 years ago
- Memory for Knowledge Graph, using Neo4j. 知识图谱存储与查询。☆46Updated last year
- SMP2018中文人机对话技术评测(ECDT)☆47Updated 7 years ago
- self complemented SpellCorrection based pinyin similairity, edit distance ,基于拼音相似度与编辑距离的查询纠错。☆84Updated 3 years ago
- Quick run NLP in many task 快速运行分类、序列标注、匹配、生成等NLP任务的Tensorflow框架 (中文 NLP 支持分布式)☆31Updated 5 years ago
- 2019 语言与智能技术竞赛-知识驱动对话 B榜第5名源码和模型☆25Updated 6 years ago
- 中文预训练模型生成字向量学习,测试BERT,ELMO的中文效果☆100Updated 5 years ago
- 面向金融领域的事件主体抽取(ccks2019),一个baseline☆119Updated 6 years ago
- 使用BERT模型进行文本分类,相似句子判断,以及词性标注☆90Updated 6 years ago
- 基于知识库的开放域问答系统的相关工作☆70Updated 7 years ago
- NLP的数据增强Demo☆48Updated 5 years ago
- 针对预定电影票的多轮对话系统☆44Updated 7 years ago
- 用tf实现各种文本分类模型,并且封装restful接口,可以直接工程化☆33Updated 6 years ago
- self implement of NLP toolkit 个人实现NLP汉语自然语言处理组件,提供基于HMM与CRF的分词,词性标注,命名实体识别接口,提供基于CRF的依存句法接口。☆55Updated 7 years ago
- 2018-JDDC大赛第4名的解决方案☆235Updated 7 years ago
- A Chinese word segment model based on BERT, F1-Score 97%☆94Updated 6 years ago
- AI Challenger 2018 Sentiment Analysis Baseline with fastText☆153Updated 7 years ago