AlvinAi96 / m6_dnn_dae
The 4th code of M6 Financial Forecasting Competition (Team: OPPO XZ Lab)
☆14Updated 11 months ago
Alternatives and similar repositories for m6_dnn_dae:
Users that are interested in m6_dnn_dae are comparing it to the libraries listed below
- 本赛题要求选手基于历史光伏发电数据、天气数据、光伏设备空间相对位置等信息,通过建立适当的模型,对未来一段时间内的光伏发电出力进行预测。A榜使用外部数据得分0.88501103804 排名32,未使用外部数据得分0.88042407737 ;B榜得分0.90467829011…☆28Updated 11 months ago
- My Data Competition Solutions☆101Updated last year
- 这里用来存储做人工智能项目的代码和参加数据挖掘比赛的代码☆93Updated 2 weeks ago
- DCIC 2023年 科技金融应用——欺诈风险识别☆26Updated last year
- Machine learning competition solutions and tricks | 数据竞赛方案合集☆52Updated last month
- 风控算法,特征工程,模型工程,分布式,树模型☆13Updated last year
- DCIC2023 Fraud Risk Identification Competition Solution.☆25Updated last year
- 数据竞赛笔记fork☆67Updated last year
- Z Lab数据实验室开源代码汇总☆200Updated 9 months ago
- CCF大数据与计算智能大赛 - 线上线下全场景生鲜超市库存履约一体化决策☆15Updated last year
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆69Updated last month
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆50Updated 5 years ago
- ☆36Updated 9 months ago
- vLoong能源AI挑战赛——异常检测赛 第五名开源代码:基于lgb单模型☆14Updated 2 years ago
- AFAC2024金融智能创新大赛☆28Updated 4 months ago
- ☆28Updated 2 years ago
- 2023全球智能汽车AI挑战赛——赛道一:AI大模型检索问答, 75+ baseline☆56Updated last year
- 科技金融应用:欺诈风险识别☆16Updated 2 years ago
- TensorFlow Probability;Time series model☆126Updated 3 years ago
- 能源AI挑战赛_异常检测赛第3名方案☆13Updated 2 years ago
- machine_learning_study☆25Updated 2 years ago
- 本赛题旨在运用有效的金融科技和大数据系统, 分析涉赌涉诈资金交易新方式,持续优化风险监测模型,通过赛题提供的涉赌涉诈黑名单、白名单及用于训练的相关交易流水数据集,构建涉赌涉诈账户算法识别模型,全面排查存量风险。A榜排名11/1594,B榜排名13/1594。☆44Updated 2 years ago
- 科大讯飞线下销量挑战赛top7方案☆12Updated 3 years ago
- ☆5Updated last year
- 天池“资金流入流出预测——挑战baseline”的解决方案,线上效果143.5☆96Updated 4 years ago
- risk_model☆26Updated 2 years ago
- ☆18Updated 2 years ago
- ☆93Updated 3 years ago
- Official Code for "How Much Can Time-related Features Enhance Time Series Forecasting?"☆34Updated 2 months ago
- Comparing XGBoost, CatBoost and LightGBM on TimeSeries Regression (RMSE, R2, AIC) on two different TimeSeries datasets.☆22Updated 5 years ago