360digitech / GBST
GBST is an optimized distributed gradient boosting survival trees library that is implemented based on the XGBoost
☆37Updated 4 years ago
Alternatives and similar repositories for GBST:
Users that are interested in GBST are comparing it to the libraries listed below
- mtgbmcode☆170Updated 2 years ago
- Python package that optimizes information value, weight-of-evidence monotonicity and representativeness of features for credit scorecard …☆117Updated 2 years ago
- 分箱工具☆20Updated 4 years ago
- 关于评分卡的基本流程☆68Updated 5 years ago
- ☆37Updated 5 years ago
- An implementation of the focal loss to be used with LightGBM for binary and multi-class classification problems☆250Updated 5 years ago
- Tools for WoE Transformation mostly used in ScoreCard Model for credit rating☆255Updated 5 years ago
- Risk scorecard develop tool welcome to use☆17Updated 3 years ago
- Uplift modeling and evaluation library. Actively maintained pypi version.☆75Updated last year
- scikit-learn compatible tools for building credit risk acceptance models☆95Updated last month
- risk_model☆26Updated 2 years ago
- scorecardpipeline封装了toad、scorecardpy、optbinning等评分卡建模相关组件,API风格与sklearn高度一致,支持pipeline式端到端评分卡建模、模型报告输出、导出PMML文件、超参数搜索等☆76Updated 2 weeks ago
- ☆40Updated 3 years ago
- 关于综合评价一个评分卡模型的方法总结(附代码)☆74Updated 6 years ago
- 国内首个迁移学习赛题 中国平安前海征信“好信杯”迁移学习大数据算法大赛 FInSight团队作品(算法方案排名第三)☆86Updated 6 years ago
- A python package for feature selection in python☆51Updated 3 years ago
- Uplift modeling package.☆373Updated 2 years ago
- ESC Team's credit scorecard tools.☆502Updated last month
- Gradient boosting model for predicting credit default risk on Kaggle competition☆16Updated 4 years ago
- ☆167Updated 4 years ago
- 利用Encoder对二分类任务的序列数据进行概率预测☆51Updated 4 years ago
- ☆70Updated 3 years ago
- Multiple Response Uplift (or heterogeneous treatment effects) package that builds and evaluates tradeoffs with multiple treatments and mu…☆66Updated 7 months ago
- A High-level Scorecard Modeling API | 评分卡建模尽在于此☆78Updated 2 years ago
- A toolkit for extracting comprehensible rules from tree-based algorithms☆42Updated 6 years ago
- Weight of Evidence,基于iv值最大思想求最优分箱☆14Updated 5 years ago
- Custom Loss Functions and Evaluation Metrics for XGBoost and LightGBM☆36Updated 3 years ago
- XGBoost for label-imbalanced data: XGBoost with weighted and focal loss functions☆318Updated last year
- Kaggle home credit default risk competition☆55Updated 6 years ago
- 分别基于statsmodels和scikit-learn实现两种可用于sklearn pipeline的 LogisticRegression,并输出相应的报告☆20Updated last year