1mrliu / AI_Learning_Competition
比赛和AI学习
☆18Updated 5 years ago
Alternatives and similar repositories for AI_Learning_Competition:
Users that are interested in AI_Learning_Competition are comparing it to the libraries listed below
- ATEC 金融大脑-金融智能NLP服务☆88Updated 6 years ago
- CCF BDCI 2019 “技术需求”与“技术成果”项目之间关联度计算模型 复赛B榜top1解决方案☆76Updated last year
- “达观杯”文本智能处理挑战赛☆54Updated 6 years ago
- 2019中国高校计算机大赛——大数据挑战赛 第一名解决方案☆41Updated 4 years ago
- 2018atec蚂蚁金服NLP智能客服比赛 16th/2632☆109Updated 6 years ago
- 2019搜狐校园算法大赛。决赛解决方案ppt、实体lgb单模代码☆70Updated 5 years ago
- ☆66Updated 6 years ago
- 2019中国高校计算机大赛——大数据挑战赛 第三名解决方案☆123Updated 5 years ago
- IJCAI-17 top1 solution☆65Updated 6 years ago
- 复盘所有NLP比赛的TOP方案,只关注NLP比赛,持续更新中!☆47Updated 5 years ago
- Sharing of the second-place solution in Tianchi OGeek competition.☆22Updated 5 months ago
- 2018年蚂蚁金服金融大脑赛题分享☆151Updated 6 years ago
- [Data Castle 算法竞赛] 精品旅行服务成单预测 final rank 11☆93Updated 7 years ago
- CCF农产品价格预测线上rank2代码☆105Updated 8 years ago
- 快手活跃用户预测——lctry队解决方案☆51Updated 6 years ago
- 2018达观杯文本智能处理比赛,文本分类主题,最终排名 8/3462☆64Updated 6 years ago
- CCF-BDCI 2018年汽车行业用户观点主题及情感识别挑战赛 第6名解决方案☆141Updated 6 years ago
- AI Challenger 2018 Sentiment Analysis Baseline with fastText☆151Updated 6 years ago
- 2018“云移杯- 景区口碑评价分值预测 初赛第9☆41Updated 7 years ago
- 在搜索业务下有一个场景叫实时搜索(Instance Search),就是在用户不断输入过程中,实时返回查询结果。 此次赛题来自OPPO手机搜索排序优化的一个子场景,并做了相应的简化,意在解决query-title语义匹配的问题。简化后,本次题目内容主要为一个实时搜索场景下…☆132Updated 5 years ago
- Text classification models☆67Updated 5 years ago
- top1解决方案☆38Updated 6 years ago
- 2018年云移杯-景区情感词分类(评分1-5)☆47Updated 6 years ago
- Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the mo…☆20Updated 6 years ago
- 2018达观杯长文本分类智能处理挑战赛 18解决方案☆152Updated 5 years ago
- 蚂蚁金服比赛 15th/2632☆47Updated 6 years ago
- Solutions of the forecast problem using Xgboost☆91Updated 6 years ago
- 2018达观杯文本智能处理挑战赛:基于ML、DL实现文本分类☆37Updated 6 years ago
- 第三届魔镜杯 智能客服问题相似性算法设计 第12名解决方案☆149Updated 6 years ago
- 招商银行信用卡中心校园大赛:消费金融场景下的用户购买预测 Rank 3rd☆69Updated 6 years ago