zli2014 / python_deep_learning
用python 实现一个简单的深度学习框架
☆30Updated 3 years ago
Alternatives and similar repositories for python_deep_learning:
Users that are interested in python_deep_learning are comparing it to the libraries listed below
- 使用opencv的dnn模块做yolov4目标检测☆14Updated 4 years ago
- yolov5检测人脸和关键点,只依赖opencv库就可以运行,程序包含C++和Python两个版本的☆62Updated 3 years ago
- 使用ONNXRuntime部署YOLOV7人头检测,包含C++和Python两个版本的程序☆31Updated 2 years ago
- 使用opencv部署DBNet文字检测,包含C++和Python两种版本的实现☆33Updated 3 years ago
- 手摸手 美团 YOLOv6模型训练和TensorRT端到端部署方案教程☆30Updated 2 years ago
- 使用ONNXRuntime部署anchor-free系列的YOLOR,包含C++和Python两种版本的程序☆40Updated 3 years ago
- 跟着Tensorrt_pro学习各种知识☆38Updated 2 years ago
- OpenCV加载onnx实现SSD,YOLOV3,YOLOV5的推理☆24Updated 3 years ago
- PP-YOLOE行人检测+HRNet人体骨骼关键点检测,使用ONNXRuntime部署,包含C++和Python两个版本的程序☆36Updated 2 years ago
- 使用ONNXRuntime部署PP-YOLOE目标检测,支持PP-YOLOE-s、PP-YOLOE-m、PP-YOLOE-l、PP-YOLOE-x四种结构,包含C++和Python两个版本的程序☆18Updated 2 years ago
- 分别使用OpenCV、ONNXRuntime部署多任务的yolov5目标检测+语义分割,包含C++和Python两个版本的程序☆30Updated 3 years ago
- Official YOLOv7训练自己的数据集并实现端到端的TensorRT模型加速推断☆47Updated 2 years ago
- ☆50Updated last year
- https://zhuanlan.zhihu.com/p/396448133☆39Updated 3 years ago
- YOLO系列资料☆50Updated 2 years ago
- 使用ONNXRuntime部署PicoDet目标检测,包含C++和Python两个版本的程序☆28Updated 2 years ago
- TensorRT for RefineNet Segmentation☆12Updated 3 years ago
- 使用ONNXRuntime部署阿里达摩院开源DAMO-YOLO目标检测,一共包含27个onnx模型,依然是包含了C++和Python两个版本的程序☆31Updated 2 years ago
- yolov5.yaml转换成yolov5.py☆17Updated 4 years ago
- ☆19Updated 4 years ago
- ☆12Updated 4 years ago
- ☆17Updated 3 years ago
- ☆67Updated 4 years ago
- ☆62Updated 4 years ago
- 分别使用OpenCV,ONNXRuntime部署yolov5不规则四边形目标检测,包含C++和Python两个版本的程序☆27Updated 2 years ago
- 用opencv的dnn模块实现Yolo-Fastest的目标检测☆50Updated 4 years ago
- A simple implementation of Tensorrt PPYOLOE☆17Updated 2 years ago
- 为bubbliiiing的yolo系列代码进行onnx部署(C++),目前已完美适配yolov4>>yolov5>>yolov5-6.1>>yolov7☆14Updated 2 years ago
- 自然场景检测DBNet网络的tensorrt版本☆22Updated 4 years ago
- YOLOv5 in PyTorch > ONNX > CoreML > iOS☆9Updated 6 months ago