zhangziliang04 / RippleNet
A tensorflow implementation of RippleNet
☆10Updated 6 years ago
Alternatives and similar repositories for RippleNet:
Users that are interested in RippleNet are comparing it to the libraries listed below
- 文本匹配的相关模型DSSM,ESIM,ABCNN,BIMPM等,数据集为LCQMC官方数据☆468Updated 2 years ago
- 中文命名实体识别NER。用keras实现BILSTM+CRF、IDCNN+CRF、BERT+BILSTM+CRF进行实体识别。结果当然是BERT+BILSTM+CRF最好啦。☆288Updated 5 years ago
- CCKS 2019 中文短文本实体链指比赛技术创新奖解决方案☆410Updated 2 years ago
- ☆268Updated 5 years ago
- Comparison of Chinese Named Entity Recognition Models between NeuroNER and BertNER☆330Updated 5 years ago
- 常用文本匹配模型tf版本,数据集为QA_corpus,持续更新中☆674Updated 5 years ago
- Code for http://lic2019.ccf.org.cn/kg 信息抽取。使用基于 BERT 的实体抽取和关系抽取的端到端的联合模型。☆287Updated 5 years ago
- 包含传统的基于统计模型(CRF)和基于深度学习(Embedding-Bi-LSTM-CRF)下的医疗数据命名实体识别☆223Updated 4 years ago
- ccks baidu entity link 实体链接 第一名☆845Updated last year
- ☆34Updated 4 years ago
- 基于BERT的中文命名实体识别☆393Updated 5 years ago
- 使用预训练语言模型ALBERT做中文NER☆474Updated 4 years ago
- 基于BI-LSTM+CRF的中文命名实体识别 Pytorch☆390Updated last year
- 使用BERT模型做文本分类;面向工业用途☆218Updated 5 years ago
- the demo for bert☆141Updated 5 years ago
- 2019年百度的三元组抽取比赛,“科学空间队”源码☆767Updated 4 years ago
- 关于文本分类的许多方法,主要涉及到TextCNN,TextRNN, LEAM, Transformer,Attention, fasttext, HAN等☆75Updated 6 years ago
- 2019年百度的三元组抽取比赛,一个baseline☆209Updated 5 years ago
- details☆264Updated 7 years ago
- Lstm-crf,Lattice-CRF,bert-ner及近年ner相关论文follow☆565Updated 6 years ago
- ChineseNER based on BERT, with BiLSTM+CRF layer☆449Updated 3 years ago
- A trial of kbqa based on bert for NLPCC2016/2017 Task 5 (基于BERT的中文知识库问答实践,代码可跑通)☆269Updated 6 years ago
- 利用预训练的中文模型实现基于bert的语义匹配模型 数据集为LCQMC官方数据☆197Updated 5 years ago
- 科大讯飞2020事件抽取挑战赛第一名解决方案&完整事件抽取系统☆540Updated 4 years ago
- 知识图谱车音工作项目☆250Updated 7 years ago
- CCKS 2020:新冠知识图谱构建与问答评测(四)新冠知识图谱问答评测☆217Updated 4 years ago
- 基于Pytorch和torchtext的知识图谱深度学习框架。☆613Updated 4 years ago
- 中文命名实体识别,实体抽取,tensorflow,pytorch,BiLSTM+CRF☆16Updated 5 years ago
- 基于远监督的中文关系抽取☆384Updated 3 years ago
- 中文知识库问答代码,CCKS2019 CKBQA评测第四名解决方案☆477Updated 4 years ago