xiaobinbin0827 / MSET_python
Python implementation of multivariate state estimation technology
☆22Updated 4 years ago
Related projects ⓘ
Alternatives and complementary repositories for MSET_python
- 刀具剩余寿命预测☆70Updated 4 years ago
- 轴承故障检测 训练赛第30名代码☆123Updated 5 years ago
- 使用TensorFlow建立简单的轴承故障诊断模型☆94Updated 6 years ago
- 包含一些比较常见的数据挖掘竞赛或者项目的源码☆118Updated 5 years ago
- 2019科大讯飞工程机械赛题-亚军☆37Updated 5 years ago
- Using LSTM to predict Remaining Useful Life of CMAPSS Dataset☆83Updated 6 years ago
- [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)☆179Updated 5 years ago
- Remaining Useful Life Prediction Using RNN/LSTM/GRU Neural Networks☆122Updated 2 years ago
- Spark - Bearing RUL Predictions☆19Updated 7 years ago
- ☆136Updated 7 years ago
- Dataset that was used during the PHM IEEE 2012 Data Challenge, built by the FEMTO-ST Institute☆127Updated 6 years ago
- Deep learning in PHM,Deep learning in fault diagnosis,Deep learning in remaining useful life prediction☆410Updated 3 years ago
- 2017工业大数据创新竞赛/风机叶片结冰预测大赛☆48Updated 6 years ago
- ☆74Updated 2 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆33Updated 4 years ago
- LSTM和SVM实现设备故障诊断☆48Updated 5 years ago
- ☆59Updated 5 years ago
- 基于深度学习机械设备故障诊断模型☆157Updated 7 years ago
- 轴承有3种故障:外圈故障,内圈故障,滚珠故障,外加正常的工作状态。如表1所示,结合轴承的3种直径(直径1,直径2,直径3),轴承的工作状态有10类☆31Updated 5 years ago
- 一维卷积网络用于航空发动机剩余寿命预测☆28Updated 5 years ago
- This is a case of bearing fault intelligent diagnosis. The program is written in MATLAB. The main techniques used are feature detection a…☆49Updated 3 years ago
- Tool wear prediction by residual CNN☆73Updated 3 years ago
- 基于深度学习的滚动轴承故障诊断方法☆170Updated 5 years ago
- A collection of data competition solutions | 数据竞赛方案合集☆48Updated last week
- 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。☆120Updated 3 years ago
- ☆158Updated 3 years ago
- 2018 phm data challenge, ion mill machine RUL & fault diagnosis☆67Updated 6 years ago
- for wind turbine phm☆14Updated 6 years ago
- One model for RUL and fault prognostic prediction on XJTU bearing dataset☆88Updated 5 years ago
- 轴承故障诊断☆61Updated 2 years ago