witcher425 / CHINESEOCR
☆16Updated 5 years ago
Related projects ⓘ
Alternatives and complementary repositories for CHINESEOCR
- 从NLP出发对于OCR的深度实践集锦,重在实战☆87Updated 3 years ago
- 表格结构解析新思路(表格识别新思路)☆122Updated 3 years ago
- crnn实现水平和垂直方向中文文字识别, 提供在3w多个中文字符训练的水平识别和垂直识别的预训练模型; 欢迎关注,试用和反馈问题... ...☆242Updated 4 years ago
- 通过深度学习来实现银行卡号识别(CTPN、Densenet、CTC)☆21Updated 5 years ago
- 图像文字检测模型(EAST/AdvancedEAST),及包含文字识别模型(CRNN+CTC),Keras/TensorFlow实现.☆189Updated 4 years ago
- end2end layout analysis based seq2seq☆133Updated 3 years ago
- CCF2019-OCR身份证要素识别-数据生成器☆152Updated 3 years ago
- ocr中的densenet网络训练☆13Updated 4 years ago
- 本项目旨在以CRAFT提供的预训练模型为基础,进行迁移学习以用于检测自己数据集中的文本。☆40Updated 5 years ago
- table detect(yolo) , table line(unet)☆236Updated last year
- text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.☆176Updated 3 years ago
- ☆147Updated 4 years ago
- 基 于CTPN和CRNN实现的银行卡号识别系统☆13Updated 4 years ago
- ocr_torch是基于Torch1.8实现的DBNet(2.2M) + CRNN(3.8M)实现的轻量级文字检测识别项目(支持onnx推理).☆28Updated 3 years ago
- ctcloss + centerloss crnn text recognition☆199Updated 3 years ago
- CTPN+CRNN bank card number identification(data/test pictures accuary ≈90%)☆69Updated 2 years ago
- The progress was used to generate synthetic dataset for Chinese OCR.☆266Updated 7 years ago
- Document photo perspective transformation correction,利用unet网络进行 文档照片透视纠偏☆49Updated 4 years ago
- Recognition of Various Common Seal Scans in Complex Environments☆45Updated 5 months ago
- 使用GAN擦出文档印章 remove stamp by GAN☆154Updated 3 years ago
- crnn trian pytorch☆52Updated 6 years ago
- OCR;文本检测、文本识别(cnn+ctc、crnn+ctc)。☆220Updated last year
- table structure recognition☆271Updated 2 years ago
- 带有位置信息的中文文本识别数据生成器☆11Updated 3 years ago
- ☆59Updated 4 years ago
- yolo3 + densenet ocr☆36Updated 4 years ago
- 一个基于TensorFlow2的CRNN项目☆56Updated 3 years ago
- Recognize tables from images and restore them into word.☆273Updated last year
- 表格解析资源综述☆41Updated 3 years ago
- EAST + Rotate + CRNN☆23Updated 5 years ago