whgaara / pytorch-soft-masked-bertLinks
☆86Updated 4 years ago
Alternatives and similar repositories for pytorch-soft-masked-bert
Users that are interested in pytorch-soft-masked-bert are comparing it to the libraries listed below
Sorting:
- 🙈 An unofficial implementation of SoftMaskedBert based on huggingface/transformers.☆95Updated 4 years ago
- Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021☆237Updated 2 years ago
- SpellGCN☆252Updated 4 years ago
- PyTorch impelementations of BERT-based Spelling Error Correction Models. 基于BERT的文本纠错模型,使用PyTorch实现。☆272Updated 5 months ago
- ☆128Updated 2 years ago
- This repository is for the paper "A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Check"☆295Updated 5 years ago
- 基于bert进行中文文本纠错☆235Updated 2 years ago
- ☆52Updated 4 years ago
- ☆269Updated last year
- pytorch中文语言模型预训练☆389Updated 5 years ago
- SIGHAN中文纠错数据集及转换后格式☆64Updated 5 years ago
- A Multi-modal Model Chinese Spell Checker Released on ACL2021.☆160Updated last year
- 李傲龍的博客☆82Updated last year
- This is the official code for paper titled "Exploration and Exploitation: Two Ways to Improve Chinese Spelling Correction Models".☆68Updated 4 years ago
- 真 · “Deep Learning for Humans”☆141Updated 3 years ago
- 中文NLP数据集☆157Updated 6 years ago
- 对Faspell的复现和思考☆23Updated 2 years ago
- 整理一下在keras中使用T5模型的要点☆172Updated 3 years ago
- 全局指针统一处理嵌套与非嵌套NER☆254Updated 4 years ago
- CCL2022汉语学习者文本纠错评测任务赛道二——CGED-8第一名解决方案☆54Updated 2 years ago
- NEZHA: Neural Contextualized Representation for Chinese Language Understanding☆262Updated 3 years ago
- 中文文本纠错相关的论文、比赛和工具。☆61Updated 2 weeks ago
- CCL 2022 汉语学习者文本纠错评测☆141Updated 2 years ago
- ☆75Updated 6 years ago
- 基于seq2edit (Gector) 的中文文本纠错。☆29Updated 2 years ago
- Chinese NLP Data Augmentation, BERT Contextual Augmentation☆109Updated 3 years ago
- Unilm for Chinese Chitchat Robot.基于Unilm模型的夸夸式闲聊机器人项目。☆157Updated 4 years ago
- ☆87Updated 3 years ago
- Dynamic Connected Networks for Chinese Spelling Check☆50Updated last year
- ☆16Updated 3 years ago