wgwang / CCL2022Links
☆46Updated 3 years ago
Alternatives and similar repositories for CCL2022
Users that are interested in CCL2022 are comparing it to the libraries listed below
Sorting:
- 复习论文《A Frustratingly Easy Approach for Joint Entity and Relation Extraction》☆32Updated 4 years ago
- ☆57Updated 2 years ago
- CCKS 2020: 基于本体的金融知识图谱自动化构建技术评测☆89Updated 3 years ago
- 基于“Seq2Seq+前缀树”的知识图谱问答☆71Updated 3 years ago
- ccks金融事件主体抽取☆72Updated 4 years ago
- The source code of paper "An Effective System for Multi-format Information Extraction".☆18Updated 4 years ago
- using lear to do ner extraction☆29Updated 3 years ago
- ccks2020基于本体的金融知识图谱自动化构建技术评测第五名方法总结☆51Updated 2 years ago
- 该仓库目的是实现基于知识图谱的中文问答系统☆56Updated 3 years ago
- 中文概念图谱OpenConcepts☆45Updated 3 years ago
- 基于pytorch的百度UIE命名实体识别。☆56Updated 2 years ago
- bootstrap式知识三元组抽取 开放式实体关系抽取 依靠依存分析确定可能的实体和关系☆23Updated 6 years ago
- 百度2021年语言与智能技术竞赛多形态信息抽取赛道事件抽取部分torch版baseline☆79Updated 4 years ago
- 基于PaddleNLP开源的抽取式UIE进行医学命名实体识别(torch实现)☆44Updated 3 years ago
- RelExt: A Tool for Relation Extraction from Text. 文本实体关系抽取工具。☆51Updated 3 years ago
- Cascade bert+word vec and one layer FLAT, trained by adversarial FGM and Stochastic Weight Averaging☆23Updated 3 years ago
- pytorch Efficient GlobalPointer☆56Updated 3 years ago
- 2020语言与智能技术竞赛:事件抽取任务方案代码☆28Updated 2 years ago
- Efficient-GlobalPointer的关系抽取任务☆24Updated 3 years ago
- 使用torch整合两种经典的指针NER抽取范式,分别是SpanBert和苏神的GlobalPointer,简单加了些tricks,配置后一键运行☆134Updated last year
- 使用多头的思想来进行命名实体识别☆34Updated 4 years ago
- 基于GlobalPointer的实体/关系/事件抽取☆149Updated 3 years ago
- 基于span分类和负采样的嵌套实体识别☆14Updated 2 years ago
- 基于百度uie的关系抽取☆20Updated 3 years ago
- 面向金融领域的小样本跨类迁移事件抽取 第三名 方案及代码☆17Updated 4 years ago
- 基于bert的中文实体链接☆31Updated 3 years ago
- [Unofficial] Predict code for AAAI 2022 paper: Unified Named Entity Recognition as Word-Word Relation Classification☆56Updated 3 years ago
- A simple implementation of Biaffine NER.☆35Updated 3 years ago
- ☆41Updated 3 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 4 years ago