wanggang1987 / fast_sadtalkerLinks
☆12Updated 2 years ago
Alternatives and similar repositories for fast_sadtalker
Users that are interested in fast_sadtalker are comparing it to the libraries listed below
Sorting:
- This project fixes the Wav2Lip project so that it can run on Python 3.9. Wav2Lip is a project that can be used to lip-sync videos to audi…☆17Updated 2 years ago
- optimized wav2lip☆18Updated last year
- 基于DINet的推理服务,推理视频流和视频☆17Updated 2 years ago
- The API server version of the SadTalker project. Runs in Docker, 10 times faster than the original!☆142Updated 2 years ago
- Wav2Lip UHQ Improvement with ControlNet 1.1☆74Updated 2 years ago
- Just a suturing monster project.☆41Updated 2 years ago
- ☆35Updated 2 years ago
- wav2lip训练数据预处理综合工具☆39Updated 2 years ago
- Orchestrating AI for stunning lip-synced videos. Effortless workflow, exceptional results, all in one place.☆73Updated 5 months ago
- simple and fast wav2lip using onnx models for face-detection and inference. Easy installation☆25Updated last year
- This is a project about talking faces. We use 576X576 sized facial images for training, which can generate 2k, 4k, 6k, and 8k digital hum…☆54Updated last year
- Faster Talking Face Animation on Xeon CPU☆129Updated 2 years ago
- ☆27Updated 2 years ago
- IP Adapter FaceID demo webui☆20Updated last year
- ☆36Updated 2 years ago
- lipsync is a simple and updated Python library for lip synchronization, based on Wav2Lip. It synchronizes lips in videos and images based…☆138Updated 10 months ago
- 基于MuseTalk的数字人代码。☆31Updated last year
- Full version of wav2lip-onnx including face alignment and face enhancement and more...☆143Updated 5 months ago
- ☆33Updated 9 months ago
- ☆42Updated last year
- 通过此代码可以免训练模型并通过轻量级服务器定制数字人形象☆106Updated last year
- Updated fork of wav2lip-hq allowing for the use of current ESRGAN models☆53Updated last year
- ☆51Updated 2 years ago
- ☆20Updated last year
- ☆75Updated last year
- wav2lip-api☆11Updated 2 years ago
- 浅尝LLM☆33Updated 2 years ago
- Simple and fast wav2lip using new 256x256 resolution trained onnx-converted model for inference. Easy installation☆45Updated last year
- ☆28Updated 2 years ago
- 基于wav2lip进行虚拟数字人训练,唇形驱动,包括数据处理流程等,模型包括96x96,192x192,192x288,288x288。☆21Updated last year