tanyokwok / Di-techLinks
滴滴出行供需预测大赛--十强
☆45Updated 9 years ago
Alternatives and similar repositories for Di-tech
Users that are interested in Di-tech are comparing it to the libraries listed below
Sorting:
- 1st Place Season one & 6th Place Season two☆151Updated 8 years ago
- 摩拜杯 算法挑战赛 第三名 解决方案☆109Updated 6 years ago
- xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems☆129Updated 6 years ago
- Solutions of the forecast problem using Xgboost☆92Updated 6 years ago
- IJCAI-17 口碑商家客流量预测☆102Updated 8 years ago
- 第一届腾讯社交广告算法大赛☆40Updated 8 years ago
- Tensorflow2.x implementations of CTR(LR、FM、FFM)☆72Updated 4 years ago
- KDD CUP 2018☆129Updated 7 years ago
- 初赛Rank1 复赛Rank1 2018 CCF 大数据与计算智能大赛 供应链需求预测 Miracccccccle☆185Updated 6 years ago
- 科赛 携程出行产品未来14个月销量预测 第2名☆62Updated 8 years ago
- Tencent Social Ads 2017 contest rank 20☆158Updated 8 years ago
- implement fm demo with python☆51Updated 6 years ago
- use xgboost and lr model for text classification. xgboost is used to be a feature transform for LR☆44Updated 7 years ago
- Deep Spatio-Temporal Neural Network (DSTN)☆167Updated 4 years ago
- 第二届智慧中国杯精品旅行服务成单预测 Rank 5(AUC 0.97539)解决方案☆67Updated 7 years ago
- ☆51Updated 9 years ago
- Neural candidates generation network based on Youtube reommender paper☆21Updated 6 years ago
- 2018第二届易观算法大赛☆85Updated 6 years ago
- gbdt+lr☆160Updated 6 years ago
- IJCAI-17 top1 solution☆65Updated 7 years ago
- kaggle 2014 criteo ctr竞赛方案整理 https://www.kaggle.com/c/criteo-display-ad-challenge☆58Updated 7 years ago
- Hybrid model of Gradient Boosting Trees and Logistic Regression (GBDT+LR) on Spark☆87Updated 6 years ago
- This is a kaggle challenge project called Display Advertising Challenge by CriteoLabs at 2014.这是2014年由CriteoLabs在kaggle上发起的广告点击率预估挑战项目。☆361Updated 6 years ago
- ☆27Updated 7 years ago
- IJCAI-18 阿里妈妈搜索广告转化预测初赛方案☆74Updated 7 years ago
- ☆91Updated 7 years ago
- 2017第一届腾讯社交广告高校算法大赛Rank28_code☆85Updated 8 years ago
- LR, Wide&Deep, DCN, NFM, DeepFM, NFFM☆116Updated 6 years ago
- code of scattered practices when studying "machine-learning".☆92Updated 5 years ago
- 跟踪计算广告涉及的召回排序模型、特征工程相关的经典论文☆82Updated 5 years ago