sungyubkim / MINE-Mutual-Information-Neural-Estimation-Links
A pytorch implementation of MINE(Mutual Information Neural Estimation)
☆346Updated 6 years ago
Alternatives and similar repositories for MINE-Mutual-Information-Neural-Estimation-
Users that are interested in MINE-Mutual-Information-Neural-Estimation- are comparing it to the libraries listed below
Sorting:
- Mutual Information Neural Estimation in Pytorch☆329Updated 9 months ago
- MINE: Mutual Information Neural Estimation in pytorch (unofficial)☆204Updated 6 years ago
- Pytorch implementation of Deep Variational Information Bottleneck☆198Updated 7 years ago
- Learning deep representations by mutual information estimation and maximization☆324Updated 6 years ago
- PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"☆73Updated 5 years ago
- Approximating Wasserstein distances with PyTorch☆459Updated 2 years ago
- Deep InfoMax (DIM), or "Learning Deep Representations by Mutual Information Estimation and Maximization"☆807Updated 6 years ago
- code for "Isolating Sources of Disentanglement in Variational Autoencoders".☆351Updated 2 years ago
- Pytorch implementation of FactorVAE proposed in Disentangling by Factorising(http://arxiv.org/abs/1802.05983)☆275Updated 7 years ago
- PyTorch implementation of a Variational Autoencoder with Gumbel-Softmax Distribution☆208Updated 6 years ago
- ☆68Updated 6 years ago
- Disentanglement library for PyTorch☆278Updated 3 years ago
- An implementation of EWC with PyTorch☆254Updated 6 years ago
- Pytorch implementation of β-VAE☆548Updated 4 years ago
- A pytorch implementation of Maximum Mean Discrepancies(MMD) loss☆210Updated 3 years ago
- A Variational Autoencoder (VAE) implemented in PyTorch☆425Updated 3 years ago
- Implementation of Gaussian Mixture Variational Autoencoder (GMVAE) for Unsupervised Clustering☆341Updated 4 years ago
- PyTorch code to run synthetic experiments.☆423Updated 3 years ago
- Code for ICML2020 paper - CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information