Saswatm123 / MMD-VAELinks
Pytorch implementation of Maximum Mean Discrepancy Variational Autoencoder, a member of the InfoVAE family that maximizes Mutual Information between the Isotropic Gaussian Prior (as the latent space) and the Data Distribution.
☆58Updated 5 years ago
Alternatives and similar repositories for MMD-VAE
Users that are interested in MMD-VAE are comparing it to the libraries listed below
Sorting:
- ☆66Updated 6 years ago
- PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"☆77Updated 5 years ago
- Implementation of 'DIVA: Domain Invariant Variational Autoencoders'☆105Updated 5 years ago
- MINE: Mutual Information Neural Estimation in pytorch (unofficial)☆206Updated 7 years ago
- A pytorch implementation of MINE(Mutual Information Neural Estimation)☆351Updated 6 years ago
- Pytorch implementation of Deep Variational Information Bottleneck☆204Updated 7 years ago
- Variational auto encoder in pytorch☆57Updated 6 years ago
- Disentanglement library for PyTorch☆281Updated 3 years ago
- Learning deep representations by mutual information estimation and maximization☆322Updated 6 years ago
- Code for the paper "Adversarial Self-supervised Contrastive Learning" (NeurIPS 2020)☆172Updated 3 years ago
- ☆89Updated 4 years ago
- A pytorch implementation of Maximum Mean Discrepancies(MMD) loss☆212Updated 3 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆102Updated 7 years ago
- This is an implementation of the VAE (Variational Autoencoder) for Cifar10☆73Updated 3 years ago
- Ladder Variational Autoencoders (LVAE) in PyTorch☆92Updated 5 years ago
- This repository contains a pytorch implementation for the paper: Multi-Level Variational Autoencoder (https://arxiv.org/abs/1705.08841), …☆71Updated 3 years ago
- A Tensorflow implementation Mutual Information estimation methods☆48Updated 2 years ago
- Sliced Wasserstein Distance (SWD) in PyTorch☆114Updated 6 years ago
- Convolutional variational autoencoder in PyTorch☆46Updated 7 years ago
- Implementation of DeepJDOT in Keras☆63Updated 6 years ago
- This is the source code for Learning Deep Kernels for Non-Parametric Two-Sample Tests (ICML2020).☆51Updated 4 years ago
- Code for the paper "Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification" (2020)☆43Updated last year
- MPVAE: Multivariate Probit Variational AutoEncoder for Multi-Label Classification☆32Updated last year
- Generalizing to unseen domains via distribution matching☆72Updated 5 years ago
- Learning Autoencoders with Relational Regularization☆46Updated 5 years ago
- Distributional Sliced-Wasserstein distance code☆50Updated last year
- Code for the paper "Generalizing to Unseen Domains via Adversarial Data Augmentation", NeurIPS 2018☆121Updated 5 years ago
- Mutual Information in Pytorch☆114Updated 2 years ago
- ☆66Updated 5 years ago
- Implementation of Invariant Risk Minimization https://arxiv.org/abs/1907.02893☆91Updated 5 years ago