sjyttkl / recbyhand
动手学推荐系统的配套代码。
☆15Updated 3 years ago
Related projects ⓘ
Alternatives and complementary repositories for recbyhand
- 零基础入门推荐系统 - 新闻推荐 Top2☆106Updated 3 years ago
- 用来处理freebase, kb4rec, movielens它们数据集的项目☆33Updated 3 years ago
- 优质的推荐算法资源汇总☆86Updated 2 years ago
- 推荐系统学习笔记☆190Updated last year
- Share Some Recommender System Paper I read.☆66Updated 3 years ago
- Easy-to-use pytorch-based framework for RecSys models☆39Updated 4 years ago
- ☆42Updated 3 years ago
- ☆36Updated 3 years ago
- 推荐系统---实验+复现+创新☆49Updated last year
- Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022☆38Updated 10 months ago
- ☆43Updated 3 months ago
- An Efficient and Effective Framework for Session-based Social Recommendation☆32Updated 2 years ago
- ☆30Updated 5 years ago
- ☆40Updated 2 years ago
- [WWW'22] Official PyTorch implementation for "Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning".☆119Updated 2 years ago
- This is the model in "A Graphical and Attentional Framework for Dual-Target Cross-Domain Recommendation" (IJCAI2020). GA-DTCDR is an opti…☆67Updated last year
- 基于Pytorch 框架复现的推荐系统的经典模型☆24Updated 5 years ago
- Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".☆85Updated 2 years ago
- Pytorch for autorec with collaborative filtering☆33Updated 5 years ago
- ☆25Updated 3 years ago
- Collaborative Filter by Graph Convolutional Network.☆36Updated 3 years ago
- all kinds of recommendation algorithms implement.☆116Updated 3 years ago
- gcn☆50Updated 3 years ago
- Sequential☆24Updated 2 years ago
- 对KGCN的代码做了一些注释,希望有需要的同学看了后有所帮助。☆34Updated 4 years ago
- 基于netflix prize 和 H&M开源数据集,从零开始构建企业级推荐系统。☆71Updated 5 months ago
- Code for paper: Learning to Build User-tag Profile in Recommendation System☆29Updated last year
- 深度学习与推荐系统学习,理论结合代码更香。☆89Updated 2 years ago
- 基于王喆老师的深度学习推荐系统书籍,主要用pytorch实现了里面涉及到的算法,有很少数量的算法是用tf2.0实现的。在这个过程中也参考很多大佬的复现代码,希望自己能持续学习 多多去实现。☆34Updated last year
- ☆18Updated 2 years ago