sean-wade / yolov5s_ncnn_inferenceLinks
yolov5s_ncnn_inference pipeline
☆21Updated 4 years ago
Alternatives and similar repositories for yolov5s_ncnn_inference
Users that are interested in yolov5s_ncnn_inference are comparing it to the libraries listed below
Sorting:
- yolox人脸检测,含关键点☆28Updated 3 years ago
- CenterTrack_caffe☆24Updated 4 years ago
- yolov5_ncnn in ununtu16.04☆10Updated 4 years ago
- Towards Real-Time Multi-Object Tracking☆29Updated 4 years ago
- U版yolov5 2.0的tensorrt加速☆37Updated 4 years ago
- centernet_mobilenetv2 inference by ncnn☆64Updated 5 years ago
- Implementation of YOLO and IOU tracker in C++☆17Updated 3 years ago
- Implement yolov5 with Tensorrt C++ api, and integrate batchedNMSPlugin. A Python wrapper is also provided.☆49Updated 3 years ago
- yolov5 nine hi3516 hi3519 object detect real-time☆42Updated 4 years ago
- caffe train face licenseplate reID action ocr centernet☆23Updated 4 years ago
- 海思hi3516dv300 nnie_mapper 工具 for ubuntu18.04☆23Updated 5 years ago
- Guide to deploying deep-learning inference networks and deep vision primitives on Sophon TPU.☆35Updated 2 years ago
- 自然场景检测DBNet网络的tensorrt版本☆22Updated 4 years ago
- Rank-consistent Oridinal Regression☆17Updated 5 years ago
- Light-weight model with NCNN inference for person/pedestrian detection.☆47Updated 5 years ago
- A multi object tracking Library Based on tensorrt☆54Updated 3 years ago
- ☆10Updated 5 years ago
- 使用TensorRT部署SlowFast模型☆21Updated 3 years ago
- 基于AlphaPose的TensorRT加速☆61Updated 4 years ago
- Tutorial includes rknn-envirment building, updating, model transfer, end-to-end YOLO3/self define model training &use, etc.☆36Updated 4 years ago
- 将Yolov3模型转成可以进行动态Batch的TensorRT推理以及Triton Inference Serving上部署的TensorRT模型☆28Updated 4 years ago
- ☆1Updated 6 months ago
- centernet, mobilenetv2, centerface☆52Updated 5 years ago
- ☆24Updated 4 years ago
- openpose, yolov3 with tiny-tensorrt☆86Updated 4 years ago
- 移动端快速人脸检测模型是基于RetinaFace的优化去掉stride8以及stride32和stride16的landmark 在CPU位Intel(R) Pentium(R) CPU G2020 @ 2.90GHz(2900 MHz)的设备中人脸检测可达到40ms/帧