rulin-jone / Confidential-Laboratory
This project is created for our Confidential Laboratory, which is supported by HEU
☆13Updated 6 years ago
Related projects ⓘ
Alternatives and complementary repositories for Confidential-Laboratory
- Seminar 2022☆21Updated 2 weeks ago
- DEEPSEC: A Uniform Platform for Security Analysis of Deep Learning Model☆209Updated 5 years ago
- NetPlier: Probabilistic Network Protocol Reverse Engineering from Message Traces☆58Updated 3 months ago
- An NLP-based fuzzing assitance tool for generating valid option combinations.☆41Updated 8 months ago
- 对抗样本(Adversarial Examples)和投毒攻击(Poisoning Attacks)相关资料☆106Updated 5 years ago
- A unified framework for AI-enhanced code analysis.☆9Updated last year
- 使用pytorch实现FGSM☆29Updated 3 years ago
- adversarial malware detection via a principled way☆16Updated last year
- code for paper "Universal Adversarial Perturbations Generative Network for Speaker Recognition"☆22Updated 3 years ago
- ☆18Updated 2 months ago
- ☆29Updated 3 years ago
- 2018年全国大学生信息安全竞赛作品赛一等奖☆25Updated 4 years ago
- ☆18Updated 4 years ago
- Devil-Whisper-Attack☆32Updated 4 years ago
- A protocol reverse engineering tool for industrial binary protocol based on pin tool☆16Updated 4 years ago
- Code for Adv-watermark: A novel watermark perturbation for adversarial examples (ACM MM2020)☆40Updated 4 years ago
- This is for releasing the source code of the ACSAC paper "STRIP: A Defence Against Trojan Attacks on Deep Neural Networks"☆49Updated this week
- Code release for DeepJudge (S&P'22)☆51Updated last year
- 武大信息隐藏实验☆18Updated last year
- ☆24Updated 2 years ago
- Polar : Function Code Aware Fuzz Testing of ICS Protocol☆31Updated 3 years ago
- 对抗样本☆263Updated last year
- the instructions about request access to AdvDroidZero☆10Updated 7 months ago
- Trojan Attack on Neural Network☆180Updated 2 years ago
- An explainable GNN-based Android malware detection system in paper "MsDroid: Identifying Malicious Snippets for Android Malware Detection…☆50Updated 8 months ago
- 主题为”基于GAN的恶意软件对抗样本生成“。首先介绍了恶意软件发展现状,引出基于模式匹配、特征空间和问题空间三种方式去检测恶意软件。然后介 绍了如何生成对抗样本攻击恶意软件检测器,详细介绍了基于GAN的恶意软件对抗样本的MalGAN框架,并对实验结果进行了对比。最后总结了结构…☆31Updated 3 years ago
- Robustness of on-device Models: AdversarialAttack to Deep Learning Models on Android Apps☆16Updated 2 years ago
- ☆14Updated 3 years ago
- Code for the paper Explanation-Guided Backdoor Poisoning Attacks Against Malware Classifiers