rickyxume / Malware_Classification
Datawhale&科大讯飞2021A.I.开发者大赛恶意软件分类CV/NLP/表格三个方向的建模思路+伪标签LGB(rank11)
☆11Updated 3 years ago
Related projects ⓘ
Alternatives and complementary repositories for Malware_Classification
- 使用Bert做embedding,结合BiLSTM做恶意软件的多分类任务☆41Updated 4 years ago
- 2021 CCF BDCI 数字安全公开赛“基于人工智能的恶意软件家族分类”赛题第二名Petrichor战队解决方案☆19Updated 2 years ago
- FewShot Malware Classification based on API call sequences, also as code repo for "A Novel Few-Shot Malware Classification Approach for U…☆17Updated 3 years ago
- ☆16Updated 2 years ago
- 使用安卓Opcode字节码的N-gram序列特征进行恶意软件检测的完全步骤,使用算法RF,KNN☆18Updated 4 years ago
- malware classify 第三届『阿里云安全算法挑战赛』源码☆16Updated 6 years ago
- A new version used Androguard but not Soot to realize MaMadroid。☆18Updated 3 years ago
- ☆11Updated 5 years ago
- 基于深度学习的恶意软件检测研究;MalConv;☆85Updated 2 years ago
- Building relation graph of Android APIs to catch the semantics between APIs, and used to enhancing Android malware detectors☆78Updated 2 years ago
- ☆59Updated 6 years ago
- With the growth of mobile devices and applications, the number of malicious software, or malware, is rapidly increasing in recent years, …☆21Updated 5 years ago
- 基于深度学习的恶意代码检测☆15Updated 4 years ago
- Few-Shot malware classification using fused features of static analysis and dynamic analysis (基于静态+动态分析的混合特征的小样本恶意代码分类框架)☆29Updated 2 years ago
- The repository is created in pursuit of detecting malware-based domain names that were generated using DGA.☆14Updated 3 years ago
- ☆27Updated 4 years ago
- Training Vision Transformers from Scratch for Malware Classification☆26Updated 3 years ago
- A Static Sensitive Subgraph-based Feature for Android Malware Detection☆11Updated 3 years ago
- 主题为”基于GAN的恶意软件对抗样本生成“。首先介绍了恶意软件发展现状,引出基于模式匹配、特征空间和问题空间三种方式去检测恶意软件。然后介绍了如何生成对抗样本攻击恶意软件检测器,详细介绍了基于GAN的恶意软件对抗样本的MalGAN框架,并对实验结果进行了对比。最后总结了结构…☆31Updated 3 years ago
- 结合cuckoo沙箱调用及报告处理实现基于API调用序列和网络流量的恶意代码检测☆10Updated 2 years ago
- Android Malware Detection using Deep Learning☆50Updated 5 years ago
- 基于卷积神经网络的恶意软件检测方法☆49Updated 5 years ago
- Evaluation of ML models in Android malware classification, adversarial attacks on DNNs & defense mechanisms☆12Updated 4 years ago
- Android Malware Detection with Graph Convolutional Networks using Function Call Graph and its Derivatives.☆35Updated 3 years ago
- Android malware detection using static and dynamic analysis☆38Updated 5 years ago
- adversarial examples, adversarial malware examples, adversarial malware detection, adversarial deep ensemble, Android malware variants☆55Updated last year
- ☆16Updated 2 years ago
- ☆14Updated 6 years ago
- The code and data for Dynamic Malware Analysis with Feature Engineering and Feature Learning.☆28Updated 4 years ago