rickyxume / Malware_Classification
Datawhale&科大讯飞2021A.I.开发者大赛恶意软件分类CV/NLP/表格三个方向的建模思路+伪标签LGB(rank11)
☆11Updated 3 years ago
Alternatives and similar repositories for Malware_Classification:
Users that are interested in Malware_Classification are comparing it to the libraries listed below
- 2021 CCF BDCI 数字安全公开赛“基于人工智能的恶意软件家族分类”赛题第二名Petrichor战队解决方案☆21Updated 3 years ago
- 使用Bert做embedding,结合BiLSTM做恶意软件的多分类任务☆42Updated 4 years ago
- FewShot Malware Classification based on API call sequences, also as code repo for "A Novel Few-Shot Malware Classification Approach for U…☆17Updated 3 years ago
- ☆27Updated 4 years ago
- 使用安卓Opcode字节码的N-gram序列特征进行恶意软件检测的完全步骤,使用算法RF,KNN☆19Updated 4 years ago
- ☆16Updated 2 years ago
- 主题为”基于GAN的恶意软件对抗样本生成“。首先介绍了恶意软件发展现状,引出基于模式匹配、特征空间和问题空间三种方式去检测恶意软件。然后介绍了如何生成对抗样本攻击恶意软件检测器,详细介绍了基于GAN的恶意软件对抗样本的MalGAN框架,并对实验结果进行了对比。最后总结了结构…☆31Updated 3 years ago
- ☆12Updated 5 years ago
- 基于卷积神经网络的恶意软件检测方法☆49Updated 5 years ago
- Few-Shot malware classification using fused features of static analysis and dynamic analysis (基于静态+动态分析的混合特征的小样本恶意代码分类框架)☆29Updated 3 years ago
- adversarial examples, adversarial malware examples, adversarial malware detection, adversarial deep ensemble, Android malware variants☆55Updated last year
- 基于深度学习的恶意代码检测☆15Updated 4 years ago
- Transfer Learning for Image-Based Malware Classification☆47Updated 2 years ago
- Android Malware Detection with Graph Convolutional Networks using Function Call Graph and its Derivatives.☆36Updated 3 years ago
- 基于深度学习的恶意软件检测研究;MalConv;☆93Updated 2 years ago
- ☆59Updated 6 years ago
- The code and data for Dynamic Malware Analysis with Feature Engineering and Feature Learning.☆29Updated last month
- A new version used Androguard but not Soot to realize MaMadroid。☆19Updated 3 years ago
- ☆17Updated 2 years ago
- Codes for AICS'2019 challenge problem☆22Updated 5 years ago
- Building relation graph of Android APIs to catch the semantics between APIs, and used to enhancing Android malware detectors☆80Updated 2 years ago
- Code from the paper: Neurlux: Dynamic Malware Analysis Without Feature Engineering☆12Updated 4 years ago
- An approach to detect Malware Files using Deep Learning☆6Updated 5 years ago
- ☆28Updated 2 years ago
- ☆11Updated 3 years ago
- Android Malware Detection using Deep Learning☆51Updated 5 years ago
- ☆22Updated 5 years ago
- 本科毕业设计,参考LENET-5模型,将恶意软件转化为灰度图,通过卷积神经网络实现了恶意软件检测分类,准确率达98%。☆21Updated 4 years ago
- 该资源为恶意代码检测相关的论文或文章总结,包括作者撰写的恶意代码与机器学习、深度学习相关博客,希望对您有所帮助~☆13Updated 4 years ago
- Android malware detection using static and dynamic analysis☆38Updated 5 years ago