prinshul / tensorsensorLinks
☆20Updated 4 years ago
Alternatives and similar repositories for tensorsensor
Users that are interested in tensorsensor are comparing it to the libraries listed below
Sorting:
- ☆165Updated this week
- ☆258Updated 3 months ago
- Yet another PyTorch Trainer and some core components for deep learning.☆218Updated last year
- A visuailzation tool to make deep understaning and easier debugging for RLHF training.☆216Updated 4 months ago
- A light-weight script for maintaining a LOT of machine learning experiments.☆91Updated 2 years ago
- An awesome gpu tasks scheduler. 轻量好用的GPU机群任务调度工具。觉得有用可以点个star☆184Updated 2 years ago
- Build deep learning applications in a new and easy way.☆241Updated 6 months ago
- an implementation of transformer, bert, gpt, and diffusion models for learning purposes☆154Updated 8 months ago
- AI比赛经验帖子 & 训练和测试技巧帖子 集锦(收集整理各种人工智能比赛经验帖)☆392Updated last week
- 使用单个24G显卡,从0开始训练LLM☆56Updated last month
- A MoE impl for PyTorch, [ATC'23] SmartMoE☆64Updated last year
- tinybig for deep function learning☆60Updated 3 weeks ago
- 用Numpy复现可训练的LLaMa3☆34Updated 11 months ago
- The Roadmap for LLMs☆85Updated last year
- 发布研究论文代码的小技巧☆84Updated 4 years ago
- A collection of phenomenons observed during the scaling of big foundation models, which may be developed into consensus, principles, or l…☆281Updated last year
- 《自然语言处理:大模型理论与实践》配套数据和代码☆64Updated 6 months ago
- A Note for Machine Learning Algorithms☆92Updated 2 months ago
- Tutorial for Ray☆25Updated last year
- DeepSpeed教程 & 示例注释 & 学习笔记 (大模型高效训练)☆169Updated last year
- deep learning template code☆66Updated last year
- 基于Gated Attention Unit的Transformer模型(尝鲜版)☆98Updated 2 years ago
- 我的Datawhale组队学习,在线阅读地址:https://relph1119.github.io/my-team-learning☆61Updated last week
- ☆109Updated 7 months ago
- 更纯粹、更高压缩率的Tokenizer☆479Updated 7 months ago
- 本项目用于大模型数学解题能力方面的数据集合成,模型训练及评测,相关文章记录。☆91Updated 9 months ago
- A bag of tricks to speed up your deep learning process☆159Updated last year
- 人工智能培训课件资源☆101Updated this week
- 深入探索大型语言模型(LLM)的世界,本项目汇集了跨越五个关键维度的代表性文本数据集——预训练语料库、微调指令数据集、偏好数据集、评估数据集、传统NLP数据集及多模态数据集。我们致力于为研究者和开发者提供最全面的资源,以推动人工智能技术的发展和应用。☆17Updated last year
- 🔥数据科学竞赛 Baseline & Topline☆143Updated 2 years ago