openinx / minibase
An embedded KV storage engine for learning HBase
☆245Updated 4 years ago
Alternatives and similar repositories for minibase:
Users that are interested in minibase are comparing it to the libraries listed below
- Apache Flink 源码分析系列,基于 git tag 1.1.2☆229Updated 8 years ago
- 不积硅步,无以至千里☆229Updated 4 years ago
- Test code for apache calcite☆213Updated 2 years ago
- A SQL driver framework that supports multiple data source☆101Updated last year
- 1st AliCloud Database Performance Competition in 2018 - Java rank No.1 source code 阿里云2018年第一届PolarDB数据库性能大赛Java排名第一源码☆200Updated 6 years ago
- a high performance key-value engine implementation using JAVA, support get, set, range. (during PolarDB race competition)☆206Updated 6 years ago
- Flink源码阅读分享,不断记录Flink源码的阅读过程☆90Updated 5 months ago
- Hadoop分布式文件系统hdfs代码分析☆182Updated 9 years ago
- xnnyygn's raft implementation☆233Updated last month
- 经典论文阅读笔记,文章同步发布在知乎和博客上。欢迎提 PR☆223Updated 3 years ago
- TGIP-CN (Thank God Its Pulsar) is a weekly live video streaming about Apache Pulsar in Chinese.☆105Updated 3 years ago
- A Java Direct IO framework which is very simple to use.☆121Updated last year
- presto、trino资料分享,开发文档、源码阅读、二次开发。☆61Updated 2 months ago
- 大数据相关内容汇总,包括分布式存储引擎、分布式计算引擎、数仓建设等。关键词:Hadoop、HBase、ES、Kudu、Hive、Presto、Spark、Flink、Kylin、ClickHouse☆229Updated 3 months ago
- https://blog.csdn.net/QXC1281/article/details/89070285☆538Updated 2 years ago
- 剥离的模块,用于查看Spark SQL生成的语法树☆92Updated 5 years ago
- OLAP Database Performance Tuning Guide☆372Updated last year
- AI 时代的智能数据库☆224Updated last year
- ☆178Updated 7 years ago
- A RPC framework leveraging Spark RPC module☆210Updated 6 years ago
- ☆188Updated 3 years ago
- Streaming System 相关的论文读物☆731Updated 3 years ago
- calcite的相关联系代码,包含CSV适配器,使用CSV适配器来进行SQL查询。SQL的parse和validate,以及RBO和CBO的使用。☆71Updated 4 years ago
- Lucene 7.x~9.x☆286Updated 4 months ago
- HBase 中文参考指南☆181Updated 4 years ago
- ☆30Updated 2 years ago
- 分布式一致性协议相关论文及中文译文,涵盖Paxos、Raft、Zab☆338Updated 6 years ago
- Quickly build large-scale ElasticSearch indices by using the fault tolerance and parallelism of Hadoop