onearrow / reid-mgnLinks
Person Re-ID MGN model conversion between Pytorch, Caffe, DarkNet, and training under Pytorch
☆9Updated 6 years ago
Alternatives and similar repositories for reid-mgn
Users that are interested in reid-mgn are comparing it to the libraries listed below
Sorting:
- Towards Real-Time Multi-Object Tracking☆29Updated 4 years ago
- caffe train face licenseplate reID action ocr centernet☆23Updated 4 years ago
- 包含Caffe-SSD-Mobilenet(DepthwiseConvolution) 和 Caffe-SSD 和 Classification☆26Updated 7 years ago
- ☆34Updated 6 years ago
- Counting people, dog and bicycle using SSD detection and tracking.☆18Updated 5 years ago
- Implementation of YOLO and IOU tracker in C++☆17Updated 3 years ago
- CenterTrack_caffe☆24Updated 4 years ago
- train Snet(by thundernet) in imagenet☆18Updated 5 years ago
- Darknet implementation of CenterNet☆29Updated 5 years ago
- Modified RefineDet☆23Updated 5 years ago
- YOLOV3-Tiny TensorRT6.0 13个类别☆32Updated 5 years ago
- yolov5s_ncnn_inference pipeline☆21Updated 4 years ago
- yolov5_ncnn in ununtu16.04☆10Updated 4 years ago
- MTCNN light + SORT tracking☆43Updated 5 years ago
- 基于hrnet的backbone改进centernet☆22Updated 5 years ago
- CenterNet with MobileNetV3 backboned helmet detection based on PyTorch with inference code only.☆52Updated 4 years ago
- centernet_mobilenetv2 inference by ncnn☆64Updated 5 years ago
- ☆33Updated 5 years ago
- 重新设计的RFBNet300,模型参数量只有0.99MB,AP达到0.78,200FPS☆100Updated 5 years ago
- tensorRT retinaface mobilenet☆43Updated 5 years ago
- LFFD and SSD based Method implemented by Pytorch for Basketball Recognition Competition.☆34Updated 5 years ago
- ☆23Updated 5 years ago
- A re-implementation of PFLD, https://arxiv.org/abs/1902.10859☆45Updated 5 years ago
- ☆13Updated 5 years ago
- Stronger SSD & YOLO v3☆39Updated 6 years ago
- ☆14Updated 5 years ago
- MobileNet-SSD Face Detection by ncnn☆21Updated 6 years ago
- Implementation RefinedetLite☆29Updated 5 years ago
- U版yolov5 2.0的tensorrt加速☆37Updated 4 years ago
- 自然场景检测DBNet网络的tensorrt版本☆22Updated 4 years ago