ntunlplab / traditional-chinese-alpaca
A Traditional-Chinese instruction-following model with datasets based on Alpaca.
☆134Updated last year
Related projects ⓘ
Alternatives and complementary repositories for traditional-chinese-alpaca
- 聯發創新基地(MediaTek Research) 致力於研究基 礎模型。我們將研究體現在適合繁體中文使用者的模型上,並在使用權許可的情況下,提供模型給學術界研究或產業界使用。☆155Updated 5 months ago
- Official github repo for TMMLU+, Large scale traditional chinese massive multitask language understanding☆44Updated 4 months ago
- finetune llama2 with traditional chinese dataset☆38Updated last year
- Generative Fusion Decoding (GFD) is a novel framework for integrating Large Language Models (LLMs) into multi-modal text recognition syst…☆68Updated 2 months ago
- ☆55Updated 4 months ago
- CKIP CoreNLP Toolkits☆115Updated last year
- Using Generative AI to generate FAQ from descriptions☆51Updated 5 months ago
- 結巴中文斷詞台灣繁體版本☆101Updated 7 years ago
- Code for the AICUP2023 competition "Meet the truth: Fact Extraction and Verification for Disinformation".☆21Updated last year
- ☆132Updated 9 months ago
- Finetune LLaMA-7B with Chinese instruction datasets☆134Updated last year
- Awesome-nlp 繁體中文翻譯計畫。原作者:https://github.com/keon/awesome-nlp☆59Updated 5 years ago
- ☆26Updated last month
- keep tracking and store taiwan stock information☆102Updated this week
- 使用繁體中文資料集做的 Embedding 模型評測☆28Updated 4 months ago
- MONPA 罔拍是一個提供正體中文斷詞、詞性標註以及命名實體辨識的多任務模型☆245Updated 2 years ago
- PTT 八卦版問答中文語料☆238Updated last month
- Kuwa GenAI OS: An open, free, secure, and privacy-focused Generative-AI Orchestrating System.☆179Updated this week
- ☆11Updated 2 years ago
- 公開的情緒訓練資料☆58Updated last year
- ☆87Updated last year
- ☆29Updated 5 years ago
- CKIP Transformers☆698Updated last year
- Airflow tutorial for beginner☆81Updated 2 years ago
- A one stop repository for generative AI research updates, interview resources, notebooks and much more!☆72Updated 4 months ago
- 結巴中文斷詞台灣繁體版本☆318Updated 8 years ago
- API of Articut 中文斷詞 (兼具語意詞性標記):「斷詞」又稱「分詞」,是中文資訊處理的基礎。Articut 不用機器學習,不需資料模型,只用現代白話中文語法規則,即能達到 SIGHAN 2005 F1-measure 94% 以上,Recall 96% 以上的…☆408Updated last week
- 台灣新聞拆拆樂☆174Updated 4 years ago