n-surkov / PySparkPipeline
Module for pipelines concept in PySpark
☆16Updated last year
Alternatives and similar repositories for PySparkPipeline:
Users that are interested in PySparkPipeline are comparing it to the libraries listed below
- Data Engineer RoadMap☆35Updated 2 years ago
- Updated 2 years ago
- ☆11Updated 3 years ago
- Learning resources for Airflow Tutorial article.☆55Updated 4 years ago
- DE or DIE meetup made by data engineers for data engineers. Currently in Russian only.☆57Updated last year
- ☆79Updated 11 months ago
- Collection of Data Science PET Projects (Сборник PET-проектов Data Science)☆90Updated 9 months ago
- Data Engineering misc☆14Updated 3 years ago
- ☆29Updated 3 years ago
- Курс про Apache Airflow 2.0☆34Updated 10 months ago
- The simple ETL with docker container☆42Updated 2 weeks ago
- Open episode of the data engineering practice course☆25Updated 9 months ago
- ☆140Updated 2 years ago
- ☆48Updated 3 years ago
- Comprehensive resources for data science interview preparation: assignments, math problems, logic tasks, live coding examples, and leetco…☆42Updated 3 weeks ago
- ☆11Updated last year
- Проекты курса Аналитик данных (Яндекс.Практикум)☆59Updated 2 years ago
- 100 упражнений по numpy версия на русском☆165Updated last year
- ☆25Updated 2 years ago
- Fast data quality framework for modern data infrastructure☆27Updated 2 months ago
- 🐳 Проектная деятельность. Здесь хранятся лекции, практические задания и проекты с karpov_courses. Ссылка: https://karpov.courses/☆163Updated 2 years ago
- Analytics Engineer Course☆18Updated last year
- Docker Compose with Almond.sh core for Jupyter☆18Updated 7 months ago
- Полная специализация "Машинное обучение и анализ данных" от МФТИ и Яндекс на Coursera☆215Updated 4 years ago
- ☆28Updated last year
- ☆89Updated 3 years ago
- Coursera Specialization: Machine Learning and Data Analysis (Yandex & MIPT)☆204Updated 2 years ago
- Practice course on Big Data☆16Updated 11 months ago
- Курс по матстату для онлайна :)☆378Updated 10 months ago
- Course on how to write clean, maintainable and scalable code on Python☆37Updated 2 months ago