muzi-8 / Visual-analytics-and-Interpretability-in-Deep-LearningLinks
本项目主要是通过可视分析的手段,对深度学习的可解释性做出讨论与探讨。并且记录小组成员的学习过程与工作
☆50Updated 6 years ago
Alternatives and similar repositories for Visual-analytics-and-Interpretability-in-Deep-Learning
Users that are interested in Visual-analytics-and-Interpretability-in-Deep-Learning are comparing it to the libraries listed below
Sorting:
- 这是kaggle-cifar10的baseline☆16Updated 6 years ago
- 深度学习面试汇总,基本知识点的查漏补缺☆115Updated 7 years ago
- The most complete list of AI top meetings☆87Updated 6 years ago
- Baseline classifiers on the polluted MNIST dataset, SJTU CS420 course project☆68Updated 6 years ago
- 使用numpy构建cnn复习深度学习知识☆35Updated 7 years ago
- a baseline for baidu dog classification competition.☆114Updated 7 years ago
- Udacity Machine Learning Nano Degree Courses☆201Updated 7 years ago
- A Strong Baseline with Many Tricks for Image Classification☆47Updated 2 years ago
- ☆54Updated 6 years ago
- DueApe数据科学,Kaggle代码资源分享☆37Updated 6 years ago
- Code base for ZJL zero shot learning competition.☆50Updated 7 years ago
- 雪浪制造AI挑战赛—视觉计算辅助良品检测☆99Updated 5 years ago
- 每日一题(涉及但不仅限于机器学习、深度学习和计算机视觉等方向)☆190Updated 7 years ago
- The use examples of tensorboard on pytorch☆148Updated 6 years ago
- 论文笔记☆55Updated 6 years ago
- 天池比赛,kaggle等等(Keras/PyTorch实战)☆182Updated 5 years ago
- mutil-class focal loss implemented in keras☆158Updated 6 years ago
- 雪浪制造AI挑战赛—视觉计算辅助良品检测 test_a 952 test_b 953☆58Updated 6 years ago
- Focal Loss for multi-class classification☆55Updated 7 years ago
- [CVPR 2017] Official Implementation for AIFT☆93Updated 4 years ago
- It contains the Attention-56 and Attention-96 models built from scratch in keras. Residual Attention Networks are described in the paper …☆38Updated 7 years ago
- ☆121Updated 5 years ago
- zero short learning☆31Updated 6 years ago
- 深度学习工程模板☆471Updated 6 years ago
- 腾讯/百度/华为/商汤等AI公司算法岗内推汇总(含校招、社招、实习生岗)☆44Updated 5 years ago
- Pytorch 数据处理的工具☆36Updated 6 years ago
- 人工智能和机器学习领域的国际顶级会议NeurIPS论文收集☆103Updated 6 years ago
- personal practice(个人练习,实现了深度学习中的一些算法,包括:四种初始化方法(zero initialize, random initialize, xavier initialize, he initialize),深度神经网络,正则化,dropout,…☆224Updated 6 years ago
- Keras implementation of knowledge distillation(Hinton, et al. 2015)☆19Updated 6 years ago
- tensorflow->BCNN + pytorch -> vgg16/resnet/BCNN☆94Updated 6 years ago